Version control with Git - first steps Swiss Institute of

Bioinformatics

WWW.Sib.swiss

Robin Engler
Vassilios loannidis

Lausanne, 12-14 Oct 2022

First steps with Git: course outline

" |Introduction to Version Control Systems and Git.
= @Git basics: your first commit.
= @Git concepts: commits, the HEAD pointer and the Git index.

= @Git branches: introduction to branched workflows and collaborative workflow
examples.

= Branch management: merge, rebase and cherry-pick.
= Retrieving data from the Git database: git checkout.
= Working with remotes: collaborating with Git.

= GitHub: an overview.

Course resources

Course home page:

Google doc:

Questions:

slides, exercises, exercise solutions (available at end of day),
command summary (cheat sheet), feedback.

register for collaborative exercises (and
optionally for exam), FAQ, ask questions.

feel free to interrupt at anytime to ask questions,
or use the Google doc.

Command line vs. graphical interface (GUI)

= This course focuses exclusively on Git concepts and command line usage.

Many GUI (graphical user interface) software are available for Git, often
integrated with code or text editors (e.g. Rstudio, Visual Studio Code,

PyCharm, ...), and it will be easy for you to start using them (if you wish to)
once you know the command line usage and the concepts of Git.

Course slides

= 3 categories of slides:

[Regular slide
[Red]

Supplementary
material
[B'UE]

Reminder slide
[Green]

Slide covered in detail during the course.

Material available for your interest, to read on your own.

Not formally covered in the course.
We are of course happy to discuss it with you if you have questions.

Material we assume you know.
Covered quickly during the course.

Learning objective

THISIS GIT: IT TRACKS COLLABORATIVE. LIORK
ON PROTECTS THROUGH A BEAUTIFUL
DISTRIBUTED GRAPH THEORY TREE. MODEL.

r COOL. HOU DO WE.USE. IT?

NO IDEA. JUST MEMORIZE. THESE. SHELL
COMMANDS AND TYPE THEM To SYNC P
IF YoU GET ERRORS, SAVE YOUR WORK
ELSEWHERE, DELETE THE PROJECT,
AND DOWNLOAD A FRESH COPY.

\fﬁ

source: https://xkcd.com/1597

https://xkcd.com/1597

version control

a brief introduction

Why use version control ?

Version control systems (VCS), often also referred to as source control/code managers (SCM),
are software designed to:

= Keep a record of changes made to (mostly) text-based content by recording specific
states of a repository’s content.

= Associate metadata to changes, such as author, date, description, tags (e.g. version).

= Share files among several people and allow collaborative, simultaneous, work on the
repository’s content.

= Backup strategy:

* Repositories under VCS can typically be mirrored to more than one location.

* The database allows to retrieve older versions of a document: if you delete something and
end-up regretting it, the VCS can restore past content for you.

® |n the case of Git, entire ecosystems such as GitHub or GitLab have emerged to offer
additional functionality:

* Distribute software and documentation.
* Team and product management tool (e.g. issue tracking, continuous integration).

A (very brief) history of Git

= Created by Linus Torvald (who also wrote the first Linux kernel in his spare time...).
= (Created to support the development of the Linux kernel code (> 20 million lines of code).

" First release in 2005 - in a self-hosting Git repository... of course :-).

The first commit of Git’s own repository by Linus Torvalds in 2005.

commit e83c5163316f89bfbde7d9ab23ca2e25604af29
Author: Linus Torvalds <torvalds@ppc970.osdl.org>

Date: Thu Apr 7 15:13:13 2005 -0700

Initial revision of "git", the information manager
from hell

(some of) The principles that guided the development of Git

Linus wasn't satisfied with existing version control software, so he wrote his own...
He had the following objectives (among others) in mind:

= Distributed development: allow parallel, asynchronous work in independent repositories that do
not require constant synchronization with a central database. Each local Git repo is a full copy of
the project so users can work independently and offline.

= Maintain integrity and trust: Since Git is a distributed VCS, maintaining integrity and trust
between the different copies of a repositories is essential. Git uses a blockchain-like approach to
uniquely identify each change to a repository, making it impossible to modify the history of a Git
repo without other people noticing it.

= Enforce documentation: in Git, each change to a repo must have an associated message. This
forces users to document their changes.

= Easy branching/merging: Git makes it easy to create new "lines of development" (a.k.a. branches)
in a project. This encourages good working practices.

= Free and open source: users have the freedom to run, copy, distribute, study, change and improve
the software.

e
S
Q
e
©
(S
>
S
(1)
i
o
()
S
K
Q.
Q.
-
(Vs

Git basics

Working principle and definitions

Basic principle of Git (and VCS in general)

Our objective: version control the content of a directory on our local machine. For this we:
* Take snapshots (current content of files) at user defined time points.

* Keep track of the order of snapshots so their history can be recreated.

Time point 1 Time point 2 Time point 3
W test_project W test_project W test_project
. ’_b) L ‘-—
I‘ [% script.py) I: =] script.py [v2] —— ‘_CiOC
—:b README.md I: = user_guide.md
— ’_b . .
=| publication.pdf
’_b .
N /. " / — |=| script.py [v3]
\\ /, \\ // [y
. S/ N\ / — |=| README.md
(snapshot of directory aD (snapshot of directory aD /snapshot of directory at\
time point 1 time point 2 time point 3
@ script.py @ script.py [v2] @ script.py [v3]
README.md
\ y \ [Z)README.md) B -
@ user_guide.md

K 2] publication.pdf /

Definitions — snapshots are called “commits”

Commit = snapshot + metadata (author, time, commit message, parent commit ID, etc. ...).

Create a new commit = record a new state of the directory’s content.

commit ID

= Each commit has a unique ID number / hash (40 hexadecimal characters): [3c1bb0cd5d67dddc02fae50bf56d3a3a4cbc7204]

Time point 1

W test_project

Time point 2

W test_project

Time point 3

e .

W test_project

. D e
I‘ [% script.py ' I: —=| script.py [v2] — Ml doc
I
B README.md I: =| user_guide.md
— ’_b . .
=| publication.pdf
—
N J . J — |=| script.py [v3]
\\ ,l, \\ /l, D
A / N\ S - |=| README.md
AN // . \\ /7
. / This represents “ S R
\\, ‘,// a "commit" \,‘,l ~~~~~~~ ‘ ———————
57d33al c3738a7 ba08242 _
@script.py @script.py [v2] @scnpt.py [v3]
/ [Z) README.md [README.md

Each commit has a unique ID.
(shown here is abbreviated form)

@ user_guide.md
@ publication.pdf

Definitions: commits are stored in a repository (or “repo”)

= Repository/repo: directory under Git control (a collection of commits).

= Not all files in a directory under Git control have to be tracked.
There can be a mix of tracked and untracked files.

= Working Tree: current content (on your computer) of a Git repository.

Git repository %
git

W test_project

- B it < “database” of the Git repository.
_';-'—'; """""" * Contains the history of the repo and all other repo-related files.
B doc

* Each Git repo has its own, separate, “database”.

script.py
README.md

— e o e e e e e e e e o o o)

—

Working tree

Definitions
= Repository history: history of commits (chronology or commits).

= Branch: refers to a “line of development” within the commit history.
(technically a branch is simply a reference to a commit)

<= Representation convention:
different colors indicate
different Git “branches”.

<4== Representation
convention: each circle
represents a commit to
the Git repo.

<4 Some commits can
have 2 parents

<= First commit in the history of the repository

git

Definitions: the git index

In Git, committing content is a 2-step process:

1. Staging: new content that should be part of the next commit must first be added to the git index (sometimes
also called staging area). This process is referred to as staging.

2. Committing: a new commit containing the content of the index is added to the repository.

- git index / staging area .
wa working directory B Git database
= d] e ’—’b TS sit

= README.m +" |Z) README.md "y O README e

o — 0 0 .m

= i L D

=] script.py glt add =| script.py Iglt commit @script.py
— =]

=] test.py \\ —Eh test.py 7 =) test.py

m . P

=| personal_notes.md ~ o _ -

- e =

This file is not added (untracked),
because we don’t want it in our commit.

git index = content of your next commit.
commit = snapshot of the git index at a given time.

Definitions: the git index (continued)

* Why do we need the git index ?
* Why not simply commit the content of the directory directly ?

I::} The objective of this 2-step procedure is to let users craft “well thought” commits.

= Commits are meant to be meaningful units of change in your code base (or the content you track).
= Not all changes in the working directory need to be part of the commit.

ONE DOES NOT SIMPLY;
N

r‘ s

DUMP,THE ENTIRE CONTENT OF THE REPO INTO
A SINGLE MEANINGLESS GOMMIT BEFORE GOING HOME

Examples of Git use cases

Exercises 2 and 3]

Exercise 1

Local repo, branched workflow
(multiple development lines)

Local repo, single branch

(TN

Use case

* Keep a documented log of your work.
* Go back to earlier versions.

git git

Use case

 Service in production with
continuing development in
parallel (e.g. new feature).

& These two cases provide no backup !! only versioning.

Exercise 4

Collaboration with
distributed and central repos.

GitHub GitLab

Use case
e Collaborate with others.
 Distributed development.

Each user has a full copy of the data*.
* Provided they regularly sync their local repo.

Local vs. Remote repository

When creating a new Git repository on your computer, everything is only local.

* To get a copy of your repository online, you must take the active steps of:

* Creating a new repository on a hosting service (e.g. GitHub, GitLab, Bitbucket).
* Associating the online repository with your local repo.
* Push your local content to the remote.

= By design, Git does not automatically synchronize a local and remote repo.
Download/upload of data must be triggered by the user.

By default, everything stays local.

e
S
Q
e
©
(S
>
S
(1)
i
o
()
S
K
Q.
Q.
-
(Vs

Git basics

your first commit

Configuring Git
= The minimum configuration is setting a user name and email.

These will be used as default author for each commit.

= Setting user name and email:
git config --global user.name <user name>

git config --global user.email <email>

= Config values can be retrieved by adding the —-get option.

. Exanuﬂes: [alice@local ~]$ git config --global user.name "Alice"

[alice@local ~]$ git config --global user.email alice@redqueen.org
[alice@local ~]$ git config --global --get user.name
Alice

[alice@loginl ~]$ git config --global --get user.email
alicel@redqueen.org

= User related settings are stored in:

" Linux: /home/$USER/.gitconfig
= Windows: C:/Users/<user name>/.gitconfig
" MacOS: /Users/<user name>/.gitconfig

Git config: changing the default text editor

= On most systems, the default editor that Git uses is “vim”.

However, this can be configured with the following config command:

git config --global core.editor <editor name>

git config --global --get core.editor

= Example: changing the default editor to “nano” (another command line editor).

[alice@local ~]$ git config --global core.editor nano
[alice@local ~]$ git config --global --get core.editor
nano

e
S
Q
e
©
(S
>
S
(1)
i
o
()
S
K
Q.
Q.
-
(Vs

e
S
Q
e
©
(S
>
S
(1)
i
o
()
S
K
Q.
Q.
-
(Vs

Git config: scopes and file locations

Depending on their scope, Git configurations apply to all Git repositories of a user, or only to a specific repository.
The main 3 scopes are:

= Global (user wide): settings apply to all Git repositories controlled by the user.

= To save a setting as part of the global scope, add the --global flagtothe git config command:
git config --global

= Storedin /home/<user name>/.gitconfig (Linux), C:\Users\<user name>\.gitconfig
(Windows) or /Users/<user name>/.gitconfig (Mac OS).

= Local (repo specific): settings apply only to a specific Git repo.

= Storedin the .git/config file of the repository.

= System (system wide): settings apply to all users and all repos on a given machine. This can only be modified
by a system administrator.

To show the list of all Git configurations, along with their scope and the location of the file they are stored-in:

git config --list --show-origin --show-scope

Creating a new Git rEPOSitOI'y The Git database is stored in
this “hidden” directory.

= Typing git init | in any directory initializes a Git database in

the directory, and thereby turn it into a “Git repository”. —— J test_project
= This creates a hidden .git directory -i.e. an empty Git database - — B st
at the root of the directory. L “"— doc
$ cd /home/alice/test project [.
$ git init =| script.py
Initialized empty Git repository in /home/alice/test project/.git/ N
./ ../ .git/ doc/ src/ README.md

= Everything is stored in this single .git directory:

= Content of all tracked files. f!} Never delete the *.git’ directory

= Complete versioning history.
= All other data associated to the Git repository (e.g. branches, tags).

= The content of the .git database can re-create the exact state of all your files at any
versioned time - e.g. if you delete a file accidentally or want to go back to an earlier version.

State of the working directory just after git init

How it look on your file system
B test_project

| ‘ 'glt“newGit
e database
— il doc

script.py

README.md

) i)

git status

show status of files in project directory.
git 1ls-files

show files tracked by Git.

git log

Show log of commits (i.e. history of repo).

How Git sees it

W test_project

script.py

README.md

1

o —
— il do
o
~

S git status

On branch master <= default br

No commits yet name

Untracked files:
doc/

anch

List of files tracked by Git

$ git 1ls-files
<empty output>

Commit history

S git log
fatal: your current branch
'master' does not have any
commits yet

README . md <

script.py

red = untracked file

Summary: when creating new Git repo...

= |t does not matter whether the directory is empty or already contains files/sub-directories.

= Files in your git repo (project directory) are not automatically tracked by Git. They must be
manually added.

= Only files located in the git repo (or one of its sub-directories) can be tracked.
= You can have both tracked and untracked files in a project directory.

= You can have multiple Git repositories on your system — e.g. one per project or one per
code/script you develop.

= Git repos are self-contained — you can rename them or move them around on your file system.

= The ensemble of all files that are under Git control in a given git repository is generally referred
to as the repository's working tree.

Never delete the . git directory, you would lose the entire versioning history
& of your repository (along with all files not currently present in the working tree).

“Bare” repositories

A bare repo is a repo that has no working tree: it does not contain any instance of the files that are under Git
version control, but only the content of the ".git" directory/database.

This type of repo is found on remote servers used to share and sync changes across multiple Git repositories.
They can be initialized with the command: git init --bare

©
=
Q
=)
©
(S
>
S
(1)
i)
o
()
S
9
Q.
Q.
=
(Vo]

Adding content to a Git repository

= By default, files in a directory under Git control are untracked. ,
— test_project

* To add a new file — or a change in file content — to the Git repository, : git
the file must be explicitly added with the git add command. P
B doc
= This allows to separate important files of your project - that you _Eb script.py
want to be tracked by Git - from unimportant ones that should not —
—] README.md

be tracked or shared (e.g. a test file of your own).

= After a file has been added once, it is considered as tracked by Git
(unless you manually remove it).

= Each time a file is modified, it must be added again for the new
content to get added to the next commit.

&Only files/directories located inside the project’s directory can be tracked.

State of the project directory after content is added with git add

$ git add script.py README.md doc

How it look on your file system How Git sees it List of files tracked by Git
— . f—— . $ git ls-files
W test_project ‘ test_project README . md
e — . script.py
— ‘ .glt doc/quick start.md
— ly doc — ly doc
— . — . Commit history
— |=| script.py — |[=| script.py $ git log
— — fatal: your current branch
— | — README.md — | — README.md 'master' does not have any
— — commits yet
S git status I
On branch master Files/changes are added,
N it t <4 .
0 commEs e but not committed yet.
Changes to be committed:
green = new or modified file » new file: README.md
new file: script.py
new file: doc/quick start.md

Committing content git commit -m/--message “your commit message”

git commit
‘\\\\‘

If no commit message is given, Git will open its default
editor and ask you to enter it interactively. e

Example

$ git commit -m “Initial commit for test project”

[master (root-commit) 8190787] Initial commit for test project
3 files changed, 6 1insertions (+)
create mode 100644 README.md
create mode 100644 script.py
create mode 100644 doc/quick start.md

\ 4

README . md 6 insertions = 6 lines added in total (across all files).
Quick-start guide for the test_project software +1

script.py

#! Jusr/bin/env python3 +1

doc/quick start.md
Test project: a project to test version control with git + 4 (empty lines also cou nt)

This is a small test project to illustrate the use of git.
Maybe | will add more content to it later.

State of the project directory after git commit

How it look on your file system How git sees it List of files tracked by Git
P _ P . it 1s-fil
B test_project B test_project ES{EAgD:;/JE.ms e
- _ script.py
e ‘ it doc/quick start.md
P S— d i S—
M doc — M do Commiit history
N ot (B t. $ git log
— |=| script. — |=] scri
— p py — p py commit 8190787daa6fca93f£5£250819716d50c31bf5c26
':P ':P Author: Alice <alice@redqueen.org>
— |=| README.md — |=| README.md Date: Sun Feb 9 15:07:56 2020 +0100
1 Initial commit for test project
S git status Now git log has finally something
On branch master . . .
to display (just 1 commit, for now).

Nothing to commit, working
tree clean

!

Clean working tree = current state of working tree
matches exactly with the latest commit.

Committing content: interactive commit message with the “vim” editor

S git commit

When no commit message is specified,
Git automatically opens a text editor.

Initial commit for test project By default, this editor is “vim”.
Please enter the commit message for your changes. Lines starting

with '"#' will be ignored, and an empty message aborts the commit.

o, ” H

On branch master * In the “vim” editor, press on the
Changes to be committed: key “i” to enter edit mode

new file: README.md

f g Liles Seciph.py = |In edit mode, you can now type
X new file: doc/quick start.md your commit message.

e
S
Q
e
©
(S
>
S
(1)
i
o
()
S
K
Q.
Q.
-
(Vs

Committing content: interactive commit message with the “vim” editor

Initial commit for test project = Commit message can be entered

. : L. . . over multiple lines.
This is the very first commit in this Git repo.

Way to go! = By convention, try to keep lines

. . . <=
Please enter the commit message for your changes. Lines starting reasonabW&#mwt(80charﬂ

with '"#' will be ignored, and an empty message aborts the commit.

On branch master
Changes to be committed:
modified: README.md
new file: script.py
new file: doc/quick start.md

Qo S S S S S 3 3 e

® Press “Esc” to exit “edit” mode.

2

= Type “:wq” in the vim “command” mode.

s
Q

Press “Enter” to exit vim and save
your commit message.

[master (root-commit) 8190787] Initial commit for test project
3 files changed, 6 insertions(+)

create mode 100644 README.md

create mode 100644 script.py = You are now back in the shell and
create mode 100644 doc/quick start.md your commit is done.

e
S
Q
e
©
(S
>
S
(1)
i
o
()
S
K
Q.
Q.
-
(Vs

Live demo

= |nitializing a new Git repo.
= Adding content to the Git repo.
= Making a commit with interactive commit message.

Making commits: some basic advice.

Git does not impose any restrictions on what and when things can be committed.
(the only exception being you cannot commit zero changes)

However, it's best if you:

= Make commits at meaningful points of your code/script development.
For instance:
* a new function/feature was added (or a few related functions)
* a bug was fixed.

= Don't commit broken code on your main/master branch (i.e. the main branch).
You can commit them to a devel / feature branch, and later consolidate them
before merging with main/master (more on branch management later).

Ignoring files

= By default, files that are not added to the Git repo are considered by Git as "untracked", and are always
listed as such by git status.

= To stop Git from listing files as "untracked", they can be added to one of the following "ignore" lists:

.gitignore .git/info/exclude

= For files to be ignored by every copy of the repository. = For files that should be ignored only by
= _gitignore is meant to be tracked: git add .gitignore your own local copy of the repository.
= Examples: = Not versioned and not shared.

* outputs of tests = Examples:

* .Rhistory, .RData * files with some personal notes.

* .pyc * files specific to your development

* .0, .3 environment (IDE).

= Files are added by manually editing the two above-mentioned files.

= Files can be ignored based on their full name, or based on glob patterns.

e * _txt ignore all files ending in ".txt"
e * [oa] ignore all files ending either in ".0" or ".a"
 logs/ appending a slash indicates a directory. The entire directory and all of its content are ignored.

* !dontignorethis. txt adding a!Infront of a file name means it should not be ignored (exception to rule).

Ignoring files: example

o

- . files ignored only in my
WM test_project local copy of the repo.
- B st my tests.py
L ol info *.my_ide

L @ exclude

EmS——

- L large_data

N
5

The .gitignore files themselves
should not be ignored: add them to
the Git repo so they are tracked.

There can be multiple .gitignore
files per project, to create custom per-
directory ignore rules.

Ignore rules in sub-directories are
inherited from the .gitignore of
their parent directory(ies).

- |=| .gitignore files ignored only in the
— \ /src sub-directory.
—|=| module.py
*. a
— .
- |=| module.pyc
'_B .
— |=| compiled.a
-
- | =] -8itignore T ignored in entire project.
—
- |=| main.log large data/
N *.log
— |=]| testrun.log .
'main.log <
—
— |=]| test_project.my_ide *.pyc
N

This file is a config for my IDE software.
It is of no use to others. This is why it is
ignoredin .git/info/exclude

red = ignored file.

Order (sometimes) matters: here the
rule to not ignore main.log must be
placed after the general rule to ignore
* log files.

Live demo

= Adding filesto .gitignore

Cross-platform collaboration: the line-end problem

Linux/Mac and Windows do not use the same “line-end” characters: this can cause problems
when collaborating with people who use a different operating system.

* Linux/Mac: uses LF (linefeed; \n) as line-ending character.
* Windows: uses CRLF (carriage-return + linefeed; \r\n) as line-ending character.

—> Text files created on Windows will not work well on Linux/Mac and vice versa.

. Ay
Windows computer & 6 Linux/Mac computer
Working directory sgit agnt Working directory
[project.git] Gitrepo[.git] Gitrepo[.git] [project.git]
[\ [\ [\ M
xxx CRLF git add' xxx CRLF /online hostin service\ > xxx CRLF > xxx CRLF
xxx CRLF xxx CRLF g xxx CRLF xxx CRLF
xxx CRLF xxx CRLF xxx CRLF CRLF

Wrong line-ending

M E V 0 a x for Linux/Mac!
. GitLab GitHub Bitbucket E git add N\

xxx LF . xxx LF < xxx LF . XXX LF
XXX LF xxx LF \ j xxx LF xxx LF
xxx LF xxx LF XXX LF

Wrong line-ending

©
=
Q
=)
©
(S
>
S
(1)
i)
o
()
S
9
Q.
Q.
=
(Vo]

for Windows! x

©
=
Q
=)
©
(S
>
S
(1)
i)
o
()
S
9
Q.
Q.
=
(Vo]

Cross-platform collaboration: solution -> setting git config core.autocrlf

The solution is to ask Git to automatically convert between LF and CRLF during add/checkout operations.

... Windows computer

=" On Windows computers: core.autocrlf true should be set so that - .
git
LF are automatically changed to CRLF each time a file is checked-in or N S eradd N
xxx CRLF xxx LF
e
CheCked'OUt- xxx CRLF Xxx LF
. . xxx CRLF xxx LF
git config core.autocrlf true Change setting for current repo.
git config --global core.autocrlf true --global = change setting for all repos. N\ N
xxx CRLF xxx LF
—
xxx CRLF XXX LF
xxx CRLF xxx LF
* On Linux/Mac computers: core.autocrlf input should be set so core.autocrlf true |
that LF line-endings (LF) are left untouched, and that CRLF are converted L e
to LF when a file is added (this will only be useful in the rare cases when a file with 4 2 %
CRLF ending is somehow present on the machine, e.g. because it was sent via email by a _\ git
Windows user). oo LE git add
———
xxx LF
git config core.autocrlf input XXX LF
git config --global core.autocrlf input ___\S
xxx CRLF
xxx CRLF
xxx CRLF
» core.autocrlf false to disable LF/CRLF auto-modifications (this is the default): xxx LF

XXX LF
XXX LF

git config core.autocrlf false
git config --global core.autocrlf false

core.autocrlf input ‘

core.autocrlf warnings

When core.autocrlf issetto True (so thisisin principle only for windows users), a warning is displayed
when files are added/checked-out to/from the git repo:

$ git add test file.py
warning: LF will be replaced by CRLF in test file.py
The file will have its original line endings in your working directory

Somehow the message is the same during check-in/check-out of files... so when
checking-in files (git add), the message is actually the wrong way round: it should
be something like “CRLF will be changed to LF in checked-in file”.

©
-
Q
=)
©
(S
>
S
(1)
i)
o
()
S
9
Q.
Q.
=
(Vo]

Displaying a repository’s
state and history
git status, git show and git log

git status

= Display the status of files in

the working directory.

git status

Green = new content in this file —

has been staged and will be part
of the next commit.

Red = this file contains new content, —
but it is not staged and will not be
part of the next commit.

N

S git status
On branch master
Changes to be committed:
(use "git reset HEAD <file>...

LICENSE. txt
README . md

" to unstage)

modified:
modified:

Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
" to discard changes in working

(use "git checkout -- <file>...
iylectory)
modified: README . md

Untracked files:
™\ (use "git add <file>..." to include in what will be committed)

untracked_file.txt

| tracked
files.

| untracked
files.

Note: new content in a file can be partially committed: i.e., it’s possible to have some
changes in the file staged (added to the index), and some unstaged.

This is the case in the example above for the README . md file. Only the staged content
will become part of the next commit.

File status in Git

There are 4 possible statuses for files in Git:

=" Tracked
File that is currently under version control by Git (i.e. it is in the Git index).

= unmodified - the content of the file is the same as in latest commit.
more precisely: the content is the same as in the commit to which HEAD is currently pointing.

= modified - the content of the file differs from the latest commit.
more precisely: it differs from the commit to which HEAD is currently pointing.

= Untracked
File that is in the working directory, but not under version control by Git.

= Ignored
Untracked file, but where Git is aware it should not be tracked.

©
=
Q
=)
©
(S
>
S
(1)
i)
o
()
S
9
Q.
Q.
=
(Vo]

git show

= Show the change in file content introduced by a commit.

git show <commit>

git show = with no argument, the latest commit on the current branch is shown

Example:

S git show 89d201f

commit 89d201fd0leadocad99%aldocbc6dabaal78c92lect
Author: Alice <alice@redqueen.org>

Date: Wed Feb 19 14:00:02 2020 +0100

Add stripe color option to class Cheshire cat

diff --git a/script.sh b/script.sh
index d7bfdc8..fa%99250 100755

--- a/script.sh

+++ b/script.sh

@@ -7,13 +7,28 (@@

def Cheshire cat():

- def init_(self, name, owner=“red queen”):

+ def init (self, name, owner=“"red queen”, stripe color="“orange”):
+ self.stripe color = stripe color

git log: display the commit history of a Git repo

git log + loads of other options (see git log --help)

git log --oneline
git log --all --decorate --oneline --graph

Example: default view (detailed commits of current branch).

$ git log
commit f6ceaac2cc74bd8cl52ellb9cl2ada725e06c8b9 (HEAD -> master, origin/master)

Author: Alice alicelredqueen.org
Date: Wed Feb 19 14:13:30 2020 +0100

Add stripe color option to class Cheshire cat

commit £3d8e2280010525ba29b0df63de8b7c2cd7daeaf
Author: Alice alice@redqueen.org
Date: Wed Feb 19 14:11:56 2020 +0100

Fix off with their heads() so it now passes tests
commit c£d30ce6e362bb4536£9d94e£f0320£f9b£f8£81e69

Author: Mad Hatter mad.hatter@wonder.net
Date: Wed Feb 19 13:31:32 2020 +0100

Add gitignore file to ignore script output

Example: compact view of current branch

$ git log --oneline

féceaac (HEAD -> master, origin/master) peak sorter: add authors to script
£3d8e22 peak sorter: display name of highest peak when script completes
cfd30ce Add gitignore file to ignore script output

£8231ce Add README file to project

821bcf5 peak sorter: add +x permission

40d5ad5 Add input table of peaks above 4000m in the Alps

a3e9eab peak sorter: add first version of peak sorter script

Example: compact view of entire repo (all branches)

$ git log --all --decorate --oneline --graph
* fcOb016 (origin/feature-dahu, feature-dahu) peak sorter: display highest peak at end of script
d29958d peak sorter: add authors as comment to script
6c0d087 peak sorter: improve code commenting
89d201f peak sorter: add Dahu observation counts to output table
9da30be README: add more explanation about the added Dahu counts
58e6152 Add Dahu count table
* f6ceaac (HEAD -> master, origin/master) peak sorter: add authors to script
* f3d8e22 peak sorter: display name of highest peak when script completes
/
* cfd30ce Add gitignore file to ignore script output
* £8231ce Add README file to project
| * 1c695d9 (origin/dev-jimmy, dev-jimmy) peak sorter: add check that input table has the ALTITUDE and PEAK columns
| * ££85686 Ran script and added output
|/
* 821bcf5 peak sorter: add +x permission
* 40d5ad5 Add input table of peaks above 4000m in the Alps
* a3e9%eab peak sorter: add first version of peak sorter script

—_ — — % % * * *

e
S
Q
e
©
(S
>
S
(1)
i
o
()
S
K
Q.
Q.
-
(Vs

Adding custom shortcuts to Git

Some git commands can be long and painful to type, especially when you need them often!
But Git developers have you covered, allowing you to set custom aliases:

git config --global alias.<name of your alias> "command to associate to alias"

Example:

git config --global alias.adog "log --all --decorate --oneline --graph"

With the alias set, you can now simply type: l, I ' : G
git adog

-
|
S

JECORATEL:(

exercise 1

Your first commit

@ This exercise has helper slides

Exercise 1 help: bash (shell) commands you may need during this course

cd <directory> Change into directory (enter directory).

cd .. Change to parent directory.

1ls -1 List content of current directory.

ls -la List content of current directory including hidden files.
pwd Print current working directory.

cp <file> <dest dir> Copy a file to directory “dest dir”.

mv <file> <new name> Rename a file to <new name>.

mv <file> <directory> Move a file to a different directory.

cat <file> Print a file to the terminal.

less <file> Show the content of a file (type “gq” to exit).
vim <file> Open a file with the “vim” text editor.
nano <file> Open a file with the “nano” text editor.

-
)
©
£
£
[
(2

Git concepts

commits, the HEAD pointer and the git index

Git commits

Git’s immutable, atomic, units of change

Introducing SHA-1

= SHA-1 stands for Secure Hashing Algorithm 1.

= Turns any binary input into an (almost*) unique 40 character hexadecimal hash/checksum value.
hexadecimal = base 16 number (0-9 + a-f)

[e83c5163316f89bfbde7d9ab23ca2e25604af290 J

= |mportant: for a given input, SHA-1 always computes the exact same and (almost*) unique hash.

= Example: running "This is a test” through the SHA-1 algorithm, will always produce the hash
shown below:
echo "This is a test" | openssl shal

}

[3c1bb0cd5d67dddc02fae50bf56d3a3adchc7204 J

* as of Jan 2020, SHA-1 collisions can be created for 45'000 USD worth of CPU time.

Commiits: Git's atomic, immutable, units of change

= A commitis the smallest unit of change in a Git repository.

= A commitisthe only way to enter a change into a Git repository.
(enforces accountability as you cannot have untraceable modifications)

Each commit has an associated author, committer, commit message and date.
(enforces documentation)

Content of a commit
Author: Mad Hatter \
Committer: Alice

Commit msg: Fix bug in class CheshireCat()
Date: 24.02.2020 10:43 SHA-1 —>[815de0aff2e7b3a6ab90e967102b9745594be7e3]
Parent: | e5d56fa

commit ID

Tree: 57dc232

Commits are lightweight: they do not contain the tracked files’ data, only a reference to the data.
(a tree* object that represents the content of the Git index at the time the commit was made).

= Commits contain a reference to their parent commit.

= Each commit is uniquely identified by a commit ID: a SHA-1 hash/checksum computed on its metadata

* Tree = reference to the content of all files at a given time point.

= Commits contain a reference to the top “Tree object” - a table linking file names and If two commits have the same ID,
hashes of the Git index at the time the commit was made. This is how Git can retrieve the state their content is identical !
of every file at a given commit.

= Commits point to their direct parent — forming a DAG (directed acyclic graph) where no If two commits have the same ID,
commit can be modified without altering all of its descendants. their entire history is identical !
root commit | fe3306a commit | 45d56fa commit | 815de0a
Author: ... N\ Author: ... \ Author: Mad Hatter \\
Committer: ... Committer: ... Committer: Alice
Commit msg: ... Commit msg: ... Commit msg: Fix bug in function foo()
Date: ... Date: ... Date: 24.02.2020 10:43
Parent: none Parent: | fe3306a Parent:| 45d56fa
Tree:| bd654b1 Tree: Tree: | 57dc232

-2 Top tree| bd654b1 Top tree | 28ad171 Top tree|57dc232 | (root directory) R

Y <

© /| README.md | [f5e333d | =———> |blob

E /

- / LICENSE.txt | [b028233| =—t—> ‘

= / blob

= K4 src/ 38405c6

G IRl “--s

e I Tree object , l

%_ : Table linking file/subdirectory names to hashes : tree | 38405c6 main.py 22906d | = |blob
oY I of the content of files (blobs). The “top tree” is : (src/ directory) —\
= : the root directory of the git repo. | fun.py dd598fe | ——t

4 e e o — — — — — — —— —— —— —————— e blob

Because of how their commit ID (SHA-1 hash) is
computed, commits are immutable: once a
commit is made, it cannot be modified without
its commit ID being modified too - which would
then make it a different commit !

Modifying a commit will modify all of its
descendants. It creates a completely new
history of the Git repo.

This ensures the integrity of a Git repository’s
history, something that is important due to the
distributed nature of Git. It can be seen as a
sort of blockchain.

O-0-0-0-0-0

c3738a7

ba08242

57dc232

ae7c3la

b1241f5

0flc3bc

—
Small

changein
commit

O--0-0-0-0

ae06ff2

023ee33

987fd34

34e7el3

f454df5

0flc3bc

e
S
Q
e
©
(S
>
S
(1)
i
o
()
S
K
Q.
Q.
-
(Vs

Git versioning

= Git stores a complete version of each file’s version*.

= Optimized for speed rather than disk space
preservation.

= Sub-optimal for tracking large files, as they will
quickly inflate the size of the .git repo.

As counter-intuitive as
it may sound, Git stores
a complete copy of
each file version. Not
just a diff.

What ??

Yes! It may not be space
efficient, but it’s fast :-)

* At least for a while, at some point Git also stores things as diffs — see "packfiles".

most VCS versioning

-—— version2 diff
+++ version3 diff

+ Yes! It may not be space
+ efficient, but it’s + fast :-)

-—— versionl diff
+++ version2 diff

+ What ??

versionl

As counter-intuitive as
it may sound, git stores
a complete copy of
each file version. Not
just a diff.

Git versioning

version3

As counter-intuitive as
it may sound, Git stores
a complete copy of
each file version. Not
just a diff.

What ??

Yes! It may not be space
efficient, but it’s fast :-)

SHA1 — e78bf23...

version2

As counter-intuitive as
it may sound, Git stores
a complete copy of
each file version. Not
just a diff.

What ?7?

SHA1 — 8fb24d3...

versionl

As counter-intuitive as
it may sound, Git stores
a complete copy of
each file version. Not
just a diff.

SHA1 - 27da79b..,

Git packfiles: compressing old history

» For older commits, Git uses a few tricks to decrease disk space usage:

* Differences between similar files are stored as diffs.
* Multiple files are compressed into a single “packfile” (.pack extension).

* Each packfile has an associated packfile index (. idx extention), that
associates filenames to blobs.

e
S
Q
e
©
(S
>
S
(1)
i
o
()
S
K
Q.
Q.
-
(Vs

the HEAD pointer

The tip of your current branch

HEAD: a pointer to the most recent commit on the current branch.

Looking at the output of git log, we see a JalFaVVEEER |abel: this shows the position of the HEAD pointer.

git Llog
commit 30e657bc31de70de260fdcfa3d90f350db69942e (HEAD -> master)
Robin Engler <robin.engler@sib.swiss>

Tue Oct 5 11:22:39 2021 +0200

Jpdate DESCRIPTION and README

HEAD pointer branch name

git log --all --decorate --oneline --graph
30e657b (HEAD -> master) Update DESCRIPTION and README
b6d/7/78e README: add author and URL

fd570c5 Add .gitignore file
e50b5cc Initial commit for fake stringr package

HEAD: a pointer to the currently checked-out branch/commit

= HEAD is — most of the time — a pointer to the latest commit on your current branch.
Sometimes it's also described as a pointer to the current branch — which is itself a pointer to the latest commit on the branch.

= When a new commit is added, HEAD is automatically moved by Git to point to that new commit.

git commit git switch devel
m m .. a Next commit
»
I
devel :,'}O devel |:>O HEAD =) devel |:>O
|

2 Next commit
\
]

| |
O O O (O &master &GHEAD O O &@master
| |

CI) é(j:lmaster <& HEAD CI) CI) O O
N\ | \ | \\ |
O O O

0 s s

Another way to look at it, is that HEAD always points to the parent of your next commit.

Relative references to commits

= Using ~ and * symbols, Git allows to refer to a commit by its position relative to another
commit, rather than by its absolute hash.

= Ref can be any reference, such as HEAD, a commit hash, a branch name, or even another Ref.

Ref~X refers to the Xth generation before the commit: ~1 = parent, ~2 = grand-parent, etc.
Ref~ is a shortcut for Ref~1

Ref*X refers to the Xth direct parent of the HEAD commit (but most commits have only a single parent).
Ref” is a shortcut for Ref£*1

23b11a7 | $= HEAD O <3 HeAD

57d33a1 | HEAD~ / HEAD~1 / HEAD” / HEADA1 HEADA1 O O HEAD"2

c3738a7 | HEAD~2 HEAD~2 O O HEADA2~1

ba08242 | HEAD~3 / 57d33al1~2 / 23b11a7-~3 HEAD~3 O HEADA2~2 V&

\/ |
17dc23c

Relative to an absolute hash O

O-0-0-0-0

Relative to another Ref

e
S
Q
e
©
(S
>
S
(1)
i
o
()
S
K
Q.
Q.
-
(Vs

the Git index
(staging area)

A preview of your next commit

Committing new content: a two-step process...

= Any new content to be committed must first be added to the git index, or staging area. This process is
referred to as staging. The objective of this 2-step procedure is to help create “well defined” commits

= New commit = snapshot of the Git index. The Git index can be thought of as a sort of “virtual stage”
where the content of the next commit is prepared.

= Staged files remain staged, unless removed or overwritten by a newer version.

= When files are added to the git index (staged), their content is already copied to the git database.

Gl working directory Ol st [local git database]
’__h . _) _ /—: -~ ~ -
= README.m / |=] READMEmd
=| script.py —-| git add () script.py g1t commit @README md
i — . [2) script.py
=| test. s (D
=] py _ v B testpy ,’ =) test.py
1 ~ -
=] some_notes.py S _=--"

N\

This file is not added (untracked),

because we don’t want it in our commit.

git index = content of your next commit.
commit = snapshot of the git index at a given time.

: working directory

working tree
actual files on disk

=] README.md

Command lines

W -git, local git database

$ git add README.md
S git commit --message '"cl"

A 4

git index
"staging area"

=] README.md

Committed
content

: working directory

working tree
actual files on disk

1,

README.md

1)

script.py

Command lines

W -git, local git database

S git add script.py
S git commit --message '"c2"

v

git index
"staging area"

README.md

script.py

Committed
content

[Z)README.md

@ script.py

[README.md

_—

: working directory 2 .git, local git database

working tree
actual files on disk

git index Committed
"staging area" content

1,

README.md README.md

A 4

1)

script.py [version 2] script.py [version 2]

1,

private_tests.py private_tests.py

=] README.md
@script.py [version 2]

@ private_tests.py
[2) output.txt

A 4

1)

output.txt output.txt

[Z)README.md
@ script.py

A 4
- . o . o o D o e EE o e e . .
- . o o o . O e o e o e e e . .

Command lines

$ git add --all
$ git commit --message "c3"

[README.md

: working directory

working tree
actual files on disk

1,

README.md

1)

script.py [version 2]

1,

private_tests.py

out)(t.txt

1)

Command lines

$ git rm output. txt
$ git rm --cached private_ tests.py
S git commit --message '"c4"

W -git, local git database

git index
"staging area"

README.md

script.py [version 2]

1,
o
c
X
~
—+
x
~

 Droowens I Ta

Committed
content

[Z) README.md
@ script.py [version 2]

=] README.md
@ script.py [version 2]

@ private_tests.py
[2) output.txt

[README.md
@ script.py

[Z)README.md

: working directory 2 .git, local git database

working tree ‘ git index | ‘ Committed |
actual files on disk "staging area" content
I D
—=| README.md —=| README.md 3 README.md
— . _ — - . @script.py [version 2]
=| script.py [version 2] =| script.py [version 2]

1,

[Z) README.md
@ script.py [version 2]

output.txt output txt 5] private_tests.py
‘/ ‘/ @ output.txt <= File remains

available in the
README.md Git database
@ script.py

[README.md

private_tests.py

©®—-6

1)

Command lines
$ git checkout c3 output. txt

®-—

Adding content to the index (staging content)

git add <file/directory> # add the selected file/directory to the git index.

= Adds the file content to the Git index (“stages” a file).

= By default, the entire content of a file is added.
(adding only part of a file is possible with --edit or --patch options)

= Each time a file is modified, it must be added again so that the new version of the
file gets added to the git index.

= Useful git add options

git add <file(s) or directory(ies)> # Stages selected files/directories.
git add -u/--update # Stages all already tracked files, but ignore untracked files.
git add -A/--all # Stages all files/directories in the working directory (except
ignored files). Also stages file deletions.
git add . # Stages entire content of working directory, except file deletions.

Removing content from the index - m

= git restore --staged / git reset HEAD: remove newly staged content from the index.

git restore --staged <file> #remove newly staged content of specific file.

XXXXXXX
XXXXXXX

XXXXXXX

Note: this is a specific use of the reset command, which has a wider scope. XXXXXXX
XXXXXXX

git reset HEAD <file> # remove newly staged content of specific file.
git reset HEAD # remove all newly staged content.

= git rm: remove entire files from the index and the working tree.

git rm --cached <file> # remove file from index only. —— @‘/ g
git rm <file> # remove file from both index and working tree. ~—— x g

&With no --cached option => deletes file on disk !

= git mv: rename and/or move files both in the working tree and the index. @ old_name @ old_name

git mv <file> <new location/new name> l l

@ new_name @ new_name

How do | know which files are staged? use git status!

git status’

S git status
On branch master
Changes to be committed:

(use "git reset HEAD <file>..." to unstage) .
Green = new content in this file —> modified: LICENSE. txt
has been staged and will be part modified: README . md
of the next commit.
Changes not staged for commit: - tracked
(use "git add <file>..." to update what will be committed) files.
(use "git checkout -- <file>..." to discard changes in working
. e . director
Red = this file contains new content, =——> Y)
but it is not staged and will not be modified: README.md
part of the next commit. ked
~ Untracked files: | untracke
™\ (use "git add <file>..." to include in what will be committed) files.

untracked file.txt

-
)
©
£
£
[
(2

How do | know which changes are staged? use git diff!

Example:
= Show differences between two states of the git repo. $ git diff
diff --git a/README.md b/README .md
git diff index f5e333d..844d178 100644
. . : : R ——- .md
git diff <file> # show diff only for a specific file s ;jigigﬁ;ﬂd
git diff --cached @e -1,2 +1,3 @@
. . i . Project description:
git diff <commit 1 (older)> <commit 2 (newer)> —This is a test
+This is a demo project
+and it's pretty useless

git diff

--cached
< >

git diff
< > git index

"staging area"

working tree
actual files on disk

Committed |
content

>

git diff <C>

git diff <A> <D>

<

©-0-0-6

Shortcuts: add + commit in a single command

= Stage all changes in tracked files (does not add untracked files).
git add -u

= Stage all changes in tracked files and commit them.
This will not commit untracked files (unlike git add --all thatalso adds untracked files).

git commit --all --message "log message"
git commit -am "log message" # short options version.

= Stage + commit all changes in the specified files: This only works for files
that are already tracked.

git commit -m "log message" <file to commit> [

Example
S git commit -m "README: updates project description" README.md

Is the same as:
$ git add README.md
$ git commit —-m "README: updates project description"

e
S
Q
e
©
(S
>
S
(1)
i
o
()
S
K
Q.
Q.
-
(Vs

|”.}

Git branches

run multiple lines of development

Why branches? an example of a data quality-control pipeline project

Branches are a great way to isolate
new changes you are working on from
the main line of development.

Branch where you wo

/ on a new feature

rk

4 new-feature

< bob-test

Branch where your colleague Bob

is “just testing stuff...” (don’t worry,
it’s not on the production branch!)

<& develop Pre-production version of the
data quality-control pipeline.

Version of code

/ used in production

<& main/master

Main development line of project. This
is the version of the data quality-control
pipeline used in production.

What are branches?

4 new-feature
= Abranch isjust a pointer (to a commit).

= Abranch is very lightweight (41 bytes).

= By convention, the master/main branch is the branch representing <=l.bug-f|x
the stable version of your work. 42 main/master

= Gitis designed to encourage branching: branches are “cheap” to
create (use little disk space), and switching between them is fast.

The master/main branch

The master/main branch is no special branch. It is simply the default name given to the branch
created when initializing a new repo [git init]. It has become a convention to use this branch as

g the stable version of a project.

main or master ?

Since October 2020, repositories created on GitHub use main instead of master as their default branch (because
“master” carries a references to slavery). It is likely that at some point Git will also adopt this convention.

lllegal characters within branch names

Spaces and some characters suchas ,~*:?*[]\ are not allowed in branch names. It is strongly
recommended to stick to lowercase letters, numbers and the “dash” character [—].

3]
Example of branched workflow: adding a new feature to an application and fixing a bug

Version of the code
used in production

For now the new branch points
to the same commit as “main”.

Branch where you work

d

on a new feature.

7

<& main (or master)
1} HEAD

> hew-feature & HEAD
& main
1. Create a new

branch to work on
a new feature

2. Do some work on
the new feature
(commits are added)

& new-feature

>

_—

3. Bug alert! (problem discovered in
production code, must be fixed asap)
Create new, dedicated, branch for the fix.

/

& new-feature

main

J HEAD
4 bug-fix

This commit
contains the
bug fix.

5. The bug-fix branch

4. After testing b .
’ ug-fix
“merge” the bug-fix ?:I g can now be deleted.
. . main
into the main branch >
> \ﬁ HEAD 6. Switch back to
The bug fix “new-feature” branch
is now in to continue work.

. production.

& new-feature <a HEAD

J HEAD
& new-feature

& main

Create a new branch: git branch <branch name> ‘

[+d
Creating new branches

O-0-0

4 master
1 HEAD

Create a new branch and switchtoit: git switch -c <branch name>

Same as above, for older Git versions: git checkout -b <branch name> ‘

git branch dev

O@-0-0

J
=

The -c option is to create and switch
to the new branch immediately.

\

git switch -c dev

git switch dev
or

git checkout dev

O@-0-0

4y master

checkout vs. switch

The git switch command was introduced in Git version 2.23 as an alternatively/replacement to git checkout
when switching branches. This is because the checkout command already has other uses (e.g. to revert files to a
given version), and it was deemed confusing that a same command would have multiple usages.

List branches and identify the currently checkout-out branch

git branch List local branches

git branch -a

Examples

$ git branch

devel
* main

new-feature

ﬂ-.-"“--. The * denotes the currently

checkout-out (active) branch.
Generally it is also displayed in green.

List local and remote branches

$ git branch -a

devel
* main
new-feature

Remote branches (to be precise, pointers to
remote branches) are shown in red and are
named remotes/<remote name>/<branch name>

remotes/origin/main —
remotes/origin/devel

¥

As a handy alternative, you can also run the “git adog” command (git log --all --decorate --oneline --graph)that
will show all branches. The currently active branch as the HEAD pointing to it.

*
*
*
*
*
*
*
*

HEAD -> main, dev-alice) improvement: add success message to QC pipeline

fix: update README
improvement: better tea-brewing checks
dev-redqueen) update: add timing module

improvement: check that Mad Hatter is on time

update: add tea-brew integration test

update: add physical integrity check to pipeline

Initial commit

git merge
get branches back together

Branch merging

= Merge: incorporate changes from the specified branch into the currently active (checked-out) branch.

git merge <branch to merge into the current branch>

f Before running the command, make sure that the branch into which the
changes should be merged is the currently active branch.
If not, use git switch <branch> to checkout the correct branch.

Merging has not made any At this point, the "feature"
changes to my commit history. [| branch could be deleted.
Example: integrate changes made on the branch feature into the branch main. All my commits remain the git branch -d feature
same (no change in hash). 4
\ s feature
(h) <2 feature <A HEAD c3738a7 | (h) €a feature ca73gat | (h) <amain <3 HEAD
@ \ !}/Iy activs branch is ba08242 The active branch is “master”. ba08242
feature » 50 ' nee:j b2 We can now merge “feature”
0 switch to “master 57dc232 0 / into “master”. 57dc232

=

git switch master

=

git merge feature

- -0~

Two types of merges

= Fast-forward merge: when branches have not diverged
The branch that is being merged (here feature) is rooted on the latest commit of the branch that it is being merged into (here main).

= 3-way merge: when branches have diverged. This introduces an extra “merge commit”.

The common ancestor of the 2 branches is not the last commit of the branch we merge into (here main).

Fast-forward merge 3-way merge (non-fast-forward)
= Guaranteed to be conflict free. = Creates an additional “merge commit” (has 2 parents).
= Conflicts may occur.
wp feature Additional “merge”

& main * / commit is created.

(h) & feature

*main (e) (h)<$afeature S\
(e) (h) ¢ feature

d ©
© (O
= © (O

L) git merge feature

Common/ 6 @

ancestor
| @)

&)
()
(e) &amain *
®
© git merge feature
()
@)

- OO~

* denotes the currently active (checkout-out) branch.

Conflicts in 3-way merges (non fast-forward)

If a same file is modified at (or around) the same place in the two branches being merged, Git cannot decide

which version to keep. There is a conflict, and you need to manually resolve it.

README.md version of main branch.

Tea pot quality-control pipeline
Check and approve tea pots for use in
unbirthday parties.

Authors: Mad Hatter, Red Queen
Date modified: 2022 Oct 10

Step 1: physical integrity check

* Check exterior for cracks and uneven
painting.

* Check for mice inside of pot.

* Verify the Mad Hatter is on time.

Step 2: tea-brewing integration test
* Brew tea for 7 min.

* Add 2 cubes of sugar.

* Probe tea.

Let’s merge feature into main...

$ git merge dev-alice
Auto-merging README.md
CONFLICT (content):

Story background: the Red Queen has
just merged changes from her branch

“dev-redqueen” into “main”.

Now Alice wants to merge her branch

“dev-alice” into “main”.

dev-redqueen

N
*main (e) (h)<$ dev-alice
D @

© (O
0

Common 6
ancestor

_————--

Merge conflict ln\README md ~y <= File with conflicts that need to be manually solved.

Automatic merge failed; fix conflicts and 'ETlen commit the result.

README.md version of dev-alice branch.

Tea pot quality-control pipeline
Check and approve tea pots for use in
unbirthday parties.

Authors: Mad Hatter, Alice
Date modified: 2022 Oct 11

Step 1: physical integrity check

* Check exterior for cracks and uneven
painting.

* Check for mice inside of pot.

Step 2: tea-brewing integration test
* Brew tea for 7 min.
* Add 2 cubes of sugar.
* Probe tea.
* Make sure we still have no idea why
a raven is like a writing desk.

= The text between <<<<<<< and
= The text between

Version from the current
branch (here main).

Version from branch being
merged into the current
branch (here dev-alice).

Note: there is no conflict
for these 2 lines, because
the edits were made at
different locations in the
file. Git is able to auto-
merge such changes.

N

Resolving conflicts

1. Open the conflicting files in the text editor of your choice.

2. Look for the text between <<<<<<< and >>>>>>> .
There can be more than one of such sections, if there is more than one conflict in the file.

Tea pot quality-control pipeline
Check and approve tea pots for use in
unbirthday parties.

<< HEAD
Authors: Mad Hatter, Red Queen
Date modified: 2022 Oct 10

Authors: Mad Hatter, Alice
Date modified: 2022 Oct 11
>>>>>>> dev-alice

Step 1: physical integrity check
* Check for mice inside of pot.
* Verify the Mad Hatter is on time.

Step 2: tea-brewing integration test

* Brew tea for 7 min.

* Add 2 cubes of sugar.

* Probe tea.

* Make sure we still have no idea why a
raven is like a writing desk.

$ git merge dev-alice

Auto-merging README.md
(content) :

CONFLICT

——--—

Merge conflict ln(README md) T <= File with conflicts

Automatic merge failed; fix conflicts ana'%hen commlt the result.

=

3. Manually edits
the file(s)...

Hash of the added
“merge” commit.

======= corresponds to the version of the current branch (branch into which you merge).
======= and >>>>>>> corresponds to the version from the branch you from which you insert changes.

Tea pot quality-control pipeline
Check and approve tea pots for use in
unbirthday parties.

Authors: Mad Hatter, Red Queen,
Date modified: 2022 Oct 11

Alice

Step 1: physical integrity check
* Check for mice inside of pot.
* Verify the Mad Hatter is on time.

Step 2: tea-brewing integration test

* Brew tea for 7 min.

* Add 2 cubes of sugar.

* Probe tea.

* Make sure we still have no idea why a
raven is like a writing desk.

4

$ git add README.md
it commit 4= |

[main a317d38] Merge branch

4. Stage the conflict-resolved file(s).
5. Commit

An editor will open with a pre-
set commit message. You can
accept it as is or modify it.

‘dev-alice'

Resolving conflicts: if you get lost...

= |f you are lost at some point, you canrun git status and it will give you some hints and commands.

= A merge can be aborted at anytime with git merge --abort

= Completed merges can be reverted (with the git reset commands — see the “git advanced” slides).

Examples

S git status

On branch main Git tells you what to do and
You have unmerged paths. / reminds you of commands.

(fix conflicts and run "git commit")
(use "git merge --abort" to abort the merge)

Unmerged paths:
(use "git add <file>..." to mark resolution)

both modified: README . md Running git status before

conflicts are resolved in the file.

$ git status Running git status after
On branch main conflicts are resolved in the file
All conflicts fixed but you are still merging. and the file was staged.

(use "git commit" to conclude merge)

\ Git tells you what to do and
reminds you of commands.

modified: README . md r

Changes to be committed:

e
S
Q
e
©
(S
>
S
(1)
i
o
()
S
K
Q.
Q.
-
(Vs

What’s in a merge commit ?

If there was no conflict, the merge commit contains
nothing but the commit message (and other metdata).

If there was a conflict, the merge commit contains the
conflict resolution changes made to the conflicted file(s).

merge commit. > 0 & main *

& dev-alice

&)
d)
)

SaPat

= {(0)=(5)

$ git show HEAD

commit 10fa3ad505821b0ea628b811143af47343a4d8dc (HEAD -> main)
Merge: 7446b3e b4fb462

Author: Red Queen <off.with.their.heads@wonder.org>

Date: Tue Oct 11 15:16:39 2022 +0200

Merge branch 'dev-redqueen'

S git show HEAD

commit a317d38448daedeocbd9b4862dcaccfdedloccdbec (HEAD -> main)
Merge: 10fa3ad 7999c7c

Author: Alice <alice@redqueen.org>

Date: Tue Oct 11 15:27:35 2022 +0200

Merge branch 'dev-alice'

diff --cc README.md
index 647belc, 74edef5..3ce8aa’
-—- a/README.md
+++ b/README.md
@@@ -1,8 -1,8 +1,8 @@@
Tea pot quality-control pipeline
Check and approve tea pots for use in unbirthday parties.

- Authors: Mad-Hatter, Red Queen

- Date modified: 2022 Oct 10

- Authors: Mad-Hatter, Alice

++Authors: Mad-Hatter, Red Queen, Alice
+ Date modified: 2022 Oct 11

Step 1: physical integrity check
* Check exterior for cracks and uneven

demo: branch merging
fast-forward and 3-way merge

Deleting branches

Branches that are merged and are not used anymore can (should) be deleted.

git branch -d <branch name> | < safe option: only lets you delete branches that are fully merged.

git branch -D <branch name> | <= YOLO option: lets you delete any branch.

= Note: A currently active (checked-out) branch cannot be deleted. @ & new-feature
You must switch to another branch before deleting it.

Example

The 'bugfix' and 'old' branches are fully merged.
$ git branch -d bugfix

Deleted branch bugfix (was bd898dc)

$ git branch -d old

Deleted branch old (was 75d3fed)

Trying to delete a non-merged branch with -d will fail:

$ git branch -d new-feature
error: The branch 'testing' is not fully merged.
If you are sure you want to delete it, run 'git branch -D testing’'.

Using -D will allow deletion of a non-merged branch:

$ git branch -D new-feature Commands from
Deleted branch new-feature (was £2a898b) “Example” box

This hash can be used to re-create it *:

h
 Deleted a branch by mistake ?
git branch £2a898b :

Branch management: best practices

master

Q
\@o—%

= Use branches to develop and tests new changes to your
code/scripts - don’t test directly on main/master. —O feature

= Don’t hesitate to create branches, they are “cheap” (they
don’t add any overhead to the git database).

= Delete branches that are no longer used.

= Don’t change the history on the main/master branch if your project is used by others. C

exercise 2

The Git reference webpage

@ This exercise has helper slides

Exercise 2 help: workflow example

HEAD = master)

master =

& fix A HEAD

1. Create new branch “fix”
and switch to it.

>

P

2. Do some work,
add commiits.

/

>
3. Test new feature, then merge
branch “fix” into “master”.

master) & fix @ HEAD

HEAD = master = () € fix

git rebase

make a linear history

git rebase: replay commits onto a different base

" git rebase allows to "move"/“re-root" a branch to a different base commit.

* |mportant: it must be executed when on the branch to rebase, not the branch you rebase on.

git rebase <branch to rebase on>

devel *
Example:
$ git branch b028233 O
* devel < Make sure you are on the |
master branch you want to rebase ! 3840506 O
*devel master \ master
S git rebase ma;ter R O O O
I I

Th
e branch you want to f5e333d O O O
rebase on.
\ I git rebase master I

it ¢
A\ O O

Rebase will modify your commit ID values (history of the rebased branch).
It's best to only rebase commits that have never left your own computer.

. . Before starting: make sure you are on
glt rEbase' eXam ple $ HEAD the branch to rebase!
4 devel * git branch

_— If noton devel: git switch devel
v
_——<:| master

___ git rebase master
¥ HEAD

We can now fast-forward merge !

T o — {master Guaranteed to be conflict free :-)

___ git switch master
§ HEAD git merge devel
J master *

O-0-0-0-@—0E-0

1 devel

Resolving conflicts with rebase

= Rebase re-applies all commit to rebase sequentially: at each step there is a potential for conflict...

= To resolve conflicts, you will have to:

When a conflict arises, Git will provide guidance:

1. Edit the conflicting files, choose the parts $ git rebase master

you Want and remove a” “nes Containing First, rerndlng head to replay your work on tOp of lt. o c
Applying: first commit on new branch
<<<<<<<,========and:>>>>>>>>} . .
Using index info to reconstruct a base tree...
M new. txt
2. Mark the files as resolved with Falling back to patching base and 3-way merge...

Auto-merging new.txt

git add <file>
CONFLICT (content): Merge conflict in new. txt

1. Continue the rebase with error: Failed to merge in the changes.
. - Patch failed at 0001 first commit on new branch
git rebase --continue

Use 'git am --show-current-patch' to see the failed patch

Resolve all conflicts manually,
mark them as resolved with "git add/rm <conflicted files>"
, then run "git rebase --continue".

L

You can instead skip this commit: run "git rebase --skip".
To abort and get back to the state before "git rebase",
run "git rebase --abort".

[+d ege oo . . .
Branch reconciliation strategies when history has diverged: merge vs. rebase

merge (3-way merge)

+ Preserves history perfectly.

+ Potentials conflicts must be solved
only once.

- Creates an additional merge commit.

- Often leads to a "messy" history.

74

git merge devel

Additional “merge
branch devel” commit.

(i) & master *

(e) (h)&devel
d @

© (D

()

@)

* master=» (e) (h) < devel

D @
© (O
O
@)

RN

rebase + fast-forward merge

+ Cleaner history = easier to read and navigate.
- Conflicts may have to be solved multiple times.

- Loss of branching history.

History of rebased branch is rewritten, not a

problem in general.

(h’) @ devel *

git switch devel
git rebase master @

Spoiler-alert: the end result is the same, @and@ have the same content.

()
(e) @ master |:>

git switch master
git merge devel

(=)

-~ 0-0-0-0-®

[+4
Ultimate history preservation: force the addition of a merge commit with —-no-£f£

If keeping an exact record of how the history of a Git repo came into existence is of prime importance,
some people like to add a merge commit even if a fast-forward merge is possible.

This is possible by adding the -—-no-££ option (“no fast-forward”) to git merge.
S git show 10fa3ad
commit 10fa3ad505821b0eat628b8
‘ Merge: 7446b3e b4fb462
Author: Alice <alice@redqueen.org>
Date: Tue Oct 11 15:16:39 2022 +0200

git merge --no-ff <branch to merge>

Merge branch ‘feature'

N

main *
(h) <amain * (h) ¢= feature 0Ny

@))
0 @
{——— (dJ amain * ——)

2020 aCaDa®

i

-

)

=

& (d)
E_ git merge feature c’ git merge --no-ff feature

< O)
i) With a regular fast-forward merge, the The merge commit “i” is added for the

c history is cleaner. However, the sole purpose of allowing us to reconstruct

Q : . ‘3 : :

E information that “f”, “g” and “h” were the exact history of the repo: it tells us

Q once part of a branch “feature” is lost n that commits “f”, “g” and “h” were once e
° (but in most cases this doesn’t matter). part of a different branch, which was then

Q. merged into “main”. L
=

(s}

e
S
Q
e
©
(S
>
S
(1)
i
o
()
S
K
Q.
Q.
-
(Vs

Readability vs. history preservation tradeoff

Screenshots of two versions of a same repository (in the sense that it contains the exact same content
with mostly the same commits).

HEAD -> main) Merge branch 'dev-alice' <= Here, history has been fully preserved, by

always using merges and forcing extra merge
commits (--no-ff) when needed.

dev-alice) improvement: add success message to QC pipeline
fix: update README
improvement: better tea-brewing checks

Merge branch 'dev-redqueen'

dev-redqueen) update: add timing module
improvement: check that Mad Hatter is on time

update: add tea-brew integration test Here, having a linear history has been prioritized
update: add physical integrity check to pipeline ! § y P

Initial commit (better readability), by rebasing branches before
‘ (fast-forward) merging them.

HEAD -> main, dev-alice) improvement: add success message to QC pipeline
fix: update README

improvement: better tea-brewing checks

dev-redqueen) update: add timing module

improvement: check that Mad Hatter is on time
update: add tea-brew integration test

update: add physical integrity check to pipeline
Initial commit

siB

*

test_node) Merge pull request #14830 from migueldiascosta/20220124105343 new pr EasyBuild452 Never rebaSing your Changes

N R I T Y Y before merging can lead to a
* 1 | | | adding easyconfigs: EasyBuild-4.5.2.eb hard to read history."

* | | | resume running test suite with Python 3.5 by using actions/setup-python@v2
o | | | add quotes to avoid that Python 3.10 is interpreted as Python 3.1 ..
* | | | stop running easyconfigs test suite with Python 3.5, also test with Python 3.8-3.10

~

*

sync with main + bump version to 4.5.3dev
tag: easybuild-easyconfigs-v4.5.2 Merge pull request #14829 from easybuilders/4.5.x

Merge pull request #14828 from migueldiascosta/eb452

~
~
N P o——

minor tweak release notes for v4.5.2
prepare release notes for EasyBuild v4.5.2 + bump version to 4.5.2

~
~
-~
~

e e e e e e e e e e e e e e
~
*

| | | Merge pull request #14821 from branfosj/20220121150125 new pr X1120210518

o | | | add libXfont2 patch to fix build when libbsd is present

o | | | Merge pull request #14743 from sib-swiss/20220117153155 new_pr_ RDKit2021034

Update RDKit-2021.03.4: update comic-neue-checksum patch checksum

Update RDKit-2021.03.4: add comic-neue-checksum patch description and author

Add patch for hard-coded checksum value of downloaded source file in the source code
add missing binutils build dependency to namedlist easyconfig

adding easyconfigs: namedlist-1.8-GCCcore-11.2.0.eb

* | | Merge pull request #14806 from boegel/20220120190948 new_pr_R-bundle-Bioconductor314

* | | add pathview extension to R-bundle-Bioconductor 3.14

* | | Merge pull request #14711 from ItIsI-Orient/20220113183646_new pr_Short-Pair20170125

Added required changes

Fixed error + edited patch desc

adding easyconfigs: Short-Pair-20170125-foss-2021b.eb and patches: Short-Pair-20170125-Python3fix.patch
Merge pull request #14792 from branfosj/20220119163605_new pr_Pillow-SIMD832

o | the Pillow vB patch also works for Pillow-SIMD v7
* | fix CVE-2021-23437 in Pillow-SIMD v8 + add Pillow-SIMD v8.3.2 in easyconfigs using a 2021b toolchain

Supplementary material...

| Merge pull request #14548 from shot0829/20211213195043 new_pr_elbencho263

demo: branch rebase

feat. manual conflict resolution

git cherry-pick

the "copy/paste" for commits

Cherry-pick: merge a single commit into the current branch

" git cherry-pick allowsto "copy" asingle commit to the current branch.

git cherry-pick <commit to pick>

Example:
"copy" a fix from one branch to another. ba0824c

/—— devel
* master ——

1t it cherrvy-pick ba0824c
HEAD g y°P

/_ devel
* master ——_

d8405c6

f \ ﬁ The cherry-picked commit has the same content,
HEAD but a different hash.

git restore / checkout

retrieving data from earlier commits

Un-stage file modifications (restore file in index)

git restore --staged <file name> |

— 2 0 — S — 00
git index Committed
content

= Restores the content of a file in the Git index back
to the latest commit (HEAD commit).

XXXXXXX
XXXXXXX

XXXXXXX
XXXXXXX

XXXXXXX
XXXXXXX

= Does not modify files in the working directory.

XXXXXXX

I
I
I
I
I
I
I
I
I
| Version of file in the

Example: un-stage changes to README.md file. ' ' last commit (HEAD)
$ git status U

On branch main

Changes to be committed: git restore --staged README.md
(use "git restore --staged <file>..." to unstage)
modified: README . md

$ git restore --staged README.md

$ git status

On branch main

Changes not staged for commit:

(use "git add <file>..." to update what will be committed)

(use "git restore <file>..." to discard changes in working directory)
modified: README . md

N

Note: the restore command is available from Git >= 2.23

The file is still modified in the working directory, but the changes are no longer staged.

-
)
©
£
£
[
(2

Restore / checkout of individual files Warning: these commands will overwrite
existing versions of the retrieved file in your
L. working directory. Make sure you don’t have
Retrieving the content of a file from an earlier commit can be done with either: R e e e e

git restore -s/--source <commit reference> <file name>

or > If no commit references is specified, the file is retrieved from the index.

git checkout <commit reference> <file name>

Examples: the <commit reference> can be e.g. a commit ID, a relative reference, a tag or a branch name.

$ git restore -s ba08242 output. txt S git checkout ba08242 output. txt
$ git restore -s HEAD~10 output. txt S git checkout HEAD~10 output. txt
S git restore -s v2.0.5 output.txt S git checkout v2.0.5 output.txt
$ git restore -s devel-branch output. txt Updated 1 path from 2a7fac8
T S git checkout devel-branch output. txt

using a branch name, implicitly refers = Updated 1 path from e55fa6f
to the latest commit on the branch.

A small difference between these two commands is that restore updates the file only in the working tree (i.e. the files in your working directory),
while checkout updates both the working tree and the index.

S git restore --source ad26560 README.md $ git checkout ad26560 README.md

S git status Updated 1 path from e55fa6f

Changes not staged for commit: $ git status

(use "git restore <file>..." to discard changes Changes to be committed:

in working directory) (use "git restore —--staged <file>..." to unstage)
modified: README .md modified: README . md

Checkout of the entire repo state at an earlier commit

= Checking out a commit will restore both the working tree and the index to the exact state of
the specified commit.

= |t will also move the HEAD pointer to that commit.

git checkout <commit reference>

Examples: Make sure to have a clean working tree before doing a checkout!
$ git checkout ba08242 $ git checkout ad26560
S git checkout HEAD~10 error: Your local changes to the following files would be

overwritten by checkout:
README . md
Please commit your changes or stash them before you switch branches

S git checkout v2.0.5

= After a checkout, you enter a "detached HEAD" =——» $ git checkout ba08242
Note: checking out 'ba08242'.

state....
You are in 'detached HEAD' state. You can look
= To get back to a “normal” state you should go around, make gxperlmental chénges and comlt tkllem,
and you can discard any commits you make in this
back to a regular branch: state without impacting any branches by performing

. . . another checkout.
git switch <branch> or git checkout <branch>

exercise 3

The crazy peak sorter script

@ This exercise has helper slides

Exercise 3 help: history of the peak-sorter repo @ feature-dahu
This slide shows the history of the repo for exercise 3, both as the command line output and [
as a schematic representation (on the right). O
This can help you understand the command line representation of a repo’s history. |
git log --all --decorate --oneline --graph O

peak sorter: display highest peak at end of script
peak sorter: added authors as comment to script I
peak sorter: improved code commenting

peak_sorter: add Dahu observation counts to output table O
README: add more explanation about the added Dahu counts

peak sorter: added authors to script O O« HEAD

Add Dahu count table

peak sorter: display name of highest peak when script completes

Add gitignore file to ignore script output
Add README fTile to project O O
peak_sorter: add check that input table has the ALTITUDE and PEAK columns dev_jimmy
Ran script and added output

\ |
peak sorter: add +x permission O O 1c695d9

Add input table of peaks above 4000m in the Alps
peak sorter: add first version of peak sorter script : :

O

O

master

Working with remotes

Linking your local repo with an online server

What is a “remote” ?

A remote is a copy of a Git repository that is stored on a server (i.e. online).

Remotes are very useful, as they allow you to:

= Backup/copy of your work. Remote copy of repo

= Collaborate and synchronize your repo with other /
team members.

= Distribute your work —i.e. let other people clone
your repo (e.g. like the repo of this course).

git push
git fetch
ﬁ 1 ﬁw-og
J!E!l liégl
/ git / g

Local copy of repo Local copy of repo

it

Remotes are generally hosted on dedicated servers/services, such as GitHub,
GitLab (either gitlab.com or a self-hosted instance), BitBucket, ...

Add a remote to an existing project (or update a remote’s URL)

= Case 1: your local repo was cloned from a remote — nothing to do (the remote was automatically added by git).

= Case 2: your local repo was created independently from the remote — it must be linked to it.
Add a new remote: git remote add <remote name> <remote url>

Change URL of remote: git remote set-url <remote name> <remote url>

Note: by convention, the <remote name> is generally setto origin.

Examples

Add a new remote (named origin) to the local repo:
$ git remote add origin https://github.com/sibgit/test.git

Update the URL of the existing origin remote.
In this example, the remote was moved GitLab.
$ git remote set-url origin https://gitlab.sib.swiss/sibgit/test.git

https://github.com/sibgit/test.git

Example — part 1: creating a new remote and pushing new branches

Y,

ﬁ)
Alice’s computer GitHub Remote

git push -u origin dev

git switch dev

& dev @origin/dev &dev
<$a main @ origin/main & main
git push -u origin main 4
git remote add origin
. https:/github.com/. .. .

Alice has a Git repo with 2 branches: main and dev. She now wants to store her work on GitHub, to collaborate and have a backup.
1. She creates a remote on GitHub and links it to her local repo using git remote add.
2. She pushes her branch main to the remote using git push -u origin main (the branch has no upstream,
so the -u/--set-upstream option must be used).
3. She pushes her branch dev to the remote (important: you must switch-to/checkout the branch before pushing).

Example — part 2: cloning a remote and checking-out branches

Y,

11 D))
Alice’s computer GitHub Remote Bob’s computer

git switch dev

git clone https:/github.com/..

/
& dev Q@ origin/dev &dev & origin/dev <&adev
£ main @origin/main <4a main < main @ origin/main

Bob has now joined the team to work with Alice.

1. He clones the repo from GitHub (note: at this point, Bob has no local dev branch - but he has a pointer to origin/dev).

2. Bob checks-out the dev branch to work on it. Because there is already a remote branch origin/dev present, Git automatically
creates a new local branch dev with origin/dev as upstream (no need add the --create/-c optionof git switch).

Example — part 3: pushing and pulling changes

To merge, you can also
simply run git pull
instead of git merge.

Y,

11 D))
Alice’s computer GitHub Remote Bob’s computer

git pull |

git merge |

git fetch Ll
, /
& dev* git push)
<& origin/dev &Qdev & origin/dev & dev
£ main @origin/main <4a main < main @ origin/main

1. Alice added 2 new commits to dev. She then pushes her changes to the remote using git push (since her dev branch
already has an upstream, there is no need to add the —u/--set-upstream option this time).

2. To get Alice’s updates from the remote, Bob runs git pull - which is a combination of git fetch+ git merge.
Important: git fetch download all new changes/updates from the remote, but does not modify your local branches.

Example — part 4: reconciliation of a diverging history

Y,

11 D))
Alice’s computer GitHub Remote Bob’s computer

! [rejected] dev -> dev (non-fast-forward)
error: failed to push some refs to
'github.com:alice/test-repo.git'

Qdev* git push 7 X{ ___git push|
Qdev*

& origin/dev & dev & origin/dev

<$amain @origin/main & main <£a main €@ origin/main

Both Alice and Bob have now added some commits to their local dev branch. As a result, the history of their branches has diverged.
1. Alice pushes her changes to the remote with git push, as usual.

2. When Bob tries to git push, his changes are rejected because the history between his local dev branch and the remote have diverged!

Example — part 4: reconciliation of a diverging history (continued)

{7 O)
Alice’s computer GitHub Remote Bob’s computer
git fetch)
&G dev* @ origin/dev Qdev & origin/dev
& dev*
<$amain @origin/main & main <£a main €@ origin/main

In order to be able to push his changes to the remote, Bob must first reconcile his local dev branch with the remote...

1. Bob starts by performinga git fetch, just to get the new commits from the remote and see how his local branch
diverges from the remote (important: this operation does not impact/update his local dev branch).

.Pﬁ

Example — part 4: reconciliation of a diverging history (continued)
To reconcile his local dev branch with the remote, Bob must decide to either
perform a merge or a rebase:

Option 1 - reconciliation using merge.
<2 origin/dev - :
This is equivalent to:

<:|dev* git fetch
git merge origin/dev

it o
S -
git push
——fo? -
) ‘ Jit bPuly __
Option 3 — overwrite the remote Tebase
With | git push --force .
<& dev* Qorigin/dev Option 2 - reconciliation using rebase.
This is equivalent to:
git fetch
A git rebase origin/dev
This will permanently ;
delete data on the If you don’t remember the —-no-rebase and --rebase
- options of git pull, simply fetch and then merge or
remote !! f ! dth
h rebase from/on origin/dev .

This introduces a merge commit.

4

% % & dev* @ origin/dev

iev* & origin/dev

Example — part 4: reconciliation of a diverging history (continued)

€ ,7 O (S
Alice’s computer GitHub Remote Bob’s computer
git pull --no-rebase).
& dev* G@origin/dev
& dev* & origin/dev & dev
£ main @ origin/main & main £a main €@ origin/main
| | | |
Bob decides to merge without rebase and runs git pull --no-rebase.
Note: depending on the version of Git, the default behavior of git pull is different: The default behavior can be modified in the git config.
* Newer versions default to git pull --ff-only (i.e. raise an error if a fast-forward git config pull.rebase false # merge
merge is hot possible) git config pull.rebase true # rebase
git config pull.ff only # fast-forward only

* Older versions default to git pull --no-rebase (i.e.the automatically merge)

Example — part 4: reconciliation of a diverging history (the end!)

5 O (S
Alice’s computer GitHub Remote Bob’s computer
git pull | git push |
& dev* @origin/dev &Qdev & dev* & origin/dev
£ main @ origin/main & main £ main @ origin/main

Finally, Bob can now git push his changes to the remote - now there are no more conflicts.

Alice can then git pull them.

Example — part 5: deleting branches on the remote

‘5 O &
Alice’s computer GitHub Remote Bob’s computer
git push origin --delete feature). git fetch --prune).
git branch -d feature | git fetch)
17, feature <@ origin/feature K feature 7 origin/feature
& dev* @ origin/dev & dev & dev* @origin/dev
<4 main @origin/main <a main £ main @ origin/main
|]]

We are now at a later point in the development... Alice has just completed a new feature on her branch feature, and merged it into dev.
She now wants to delete the feature branch both locally and on the remote.

1. Alice deletes her local branch with git branch -d feature.

2. Alice deletes the feature branch on the remote with git push origin --delete feature.

3. Bobruns git fetch, but this does not delete references to remote branches, even if they no longer exist on the remote.
4. To delete his local reference to the remote feature branch (origin/feature), Bob hastouse git fetch --prune.

GitHub

collaborate and share your work

GitHub — an online home for your Git repos

" GitHub [github.com] is a hosting platform for Git repositories.

= 73+ million users, 200+ million repositories (as of 2022).

= Very popular to share/distribute open source software.

= Allows to host public (anybody can access) and private (restricted access) repos.
" Hosting of projects is free, with some paid features.

" Popular alternatives include:

= @GitLab [gitlab.com], which can also be installed as a local instance: e.g.
gitlab.sib.swiss.

= BijtBucket [bitbucket.org].

https://github.com/
https://about.gitlab.com/
https://bitbucket.org/

Creating a new project on GitHub

To create a new repo, click on m - Of Clr'ifglasnt‘;?eunr#;j: :;;';ifz()p

Either on the welcome screen at https://github.com (after signing-in)... u

(’ Search or jump to... Pull requests Issues Marketplace Explore

Signed in as sibgit

\ .
R t R itori f All activit
Q ecent Repositories \ m] y () Setstaius

Smm= i

Find a repository... = = robinengler pushed to sibgit/sibgit.github.io 3 hours ago Your profile @

@ sibgit/sibgit.github.io Your repositories

5 commits to master

@ sibgit/git_resources_webpage doae1b1 Add info on habitat and behavior for manta ray Your codespaces
@ sibgit/glitter-cursor 8677d8c Add image for manta ray Your projects
@ sibgit/test2 3 more commits » Your stars
@ sibgit/useful-tools Your gists
@ sibgit/test-project o .

csReynaB starred sibgit/sibgit.github.io 4 hours ago Upgrade
@ sibgit/git-resources

L . Feature preview]

Show more sibgit/sibgit.github.io o

OHTML YY1 Updated Mar 10 Pull requests Issues Marketplace Explore

Recent activity

When you take actions across GitHub, we’ll provide

links to that activity here. e

robinengler pushed to sibgit/sibgit.github.io 6 hours ago

[0 Overview B Repositories 10 {3 Projects @ Packages ¥ Stars 2 u

Find a repository. ﬁ Type ~ Language ~ Sort ~ m

sibgit.github.io Puoiic ¢St .

5 commits to master
2dse4fa Sunfish: add behavior info
3404976 added picture and distribution information of sunf

3 more commits » @HTML ¥ 1 Updated 4 hours ago

git_resources_webpage Pubic S
A simple web page referencing a list of useful Git resources

S|B Git course @HTML Updated 13 days ago

sibgit

SIB Git course account glitter-cursor Public Sy Star .

Wonderful glitter
Edit profile

JavaScript Updated 13 days ago

... and the Repositories tab.

https://github.com/

Create a new repository

A repository contains all project files, including the revision history. Already have a project repository elsewhere?
Import a repository.

Owner * Repository name *

o) sibgit ~ / my-new-project v
Great repository names are short and memorable. Need inspiration? How about super-duper-guacamole?
Description (optional)

A first test project on GitHub

Q Public
n Anyone on the internet can see this repository. You choose who can commit.

0O 6 Private
You choose who can see and commit to this repository.

Initialize this repository with:
Skip this step if you're importing an existing repository.

[Add a README file

This is where you can write a long description for your project. Learn more.

[Add .gitignore
Choose which files not to track from a list of templates. Learn more.

[] Choose a license
A license tells others what they can and can't do with your code. Learn more.

Create repository

<:I Enter a name for your new repository.

<:I Project description.

<:| Select whether your repo should be:

* Public - anyone can access it (read from it).
* Private - only people you authorize.

Note: even if a repo is public, only authorized members
can push changes to it.

<:| Pre-fill the repository with some files (don’t do this if
you already have a local repo you want to push):

« README — A text file that is displayed on the
homepage of your repo (with markdown rendering).

» A .gitignore file selected from a list of templates.

* Alicense file selected from a set of standard licenses
(e.g. GPL, MIT, ...).

<:I Click Create repository.

The home page of an empty repository provides instructions to get started...

<> Code (1) Issues 1 Pull requests (») Actions ["l] Projects [wiki (1) Security |~ Insights 51 Settings

Quick setup — if you've done this kind of thing before

[é'] Set up in Desktop or HTTPS SSH https://github.com/sibgit/test-project.git

Get started by creating a new file or uploading an existing file. We recommend every repository include a README, LICENSE, and .gitignore.

...0r create a new repository on the command line

echo "# test-project" >> README.md

git init

git add README.md

git commit -m "first commit"

git branch -M main
{git remote add origin https://github.com/sibgit/test-project.git
j 8it push -u origin main

<= Add remote to your local repo.

4= Push a branch (here “main”) to the remote.

i
{=3 Same commands as above...

o

When at least 1 file is present in the repo, the home page of your Git repo looks like this:

O Search or jump to... Pull requests Issues Marketplace Explore
. «“ ”
Code tab: the “home [sibgit/test Puvic ¢ Pn | @Unwaich 2 ~ %9 Fork 0 ¢ Sar 0 .
page of your repo.
<> Code () lssues 1 19 Pull requests 1 (® Actions ffJ Projects 1 0 Wiki (@) Security |~ Insights 53 Settings
Branch you are
currently viewing |:> #° master ~ § 2branches © 0 tags Go to file Add file ~ About Q3
33 ‘Ns.:iescriptfon, website, or topics
\ S
. . «p sibgit Update README.md @8bsc87 on Feb 26,2020 YO 3 commits provided:~< _
List of files present < kY RN
in the repo. |:> 3 README.md Update README.md N\ 2 years ago I Readme IRy
‘\ ¥¢ Ostars \“*~~
If you have a I:> README.md Go to fil Add fil Cod
. . O [0 Tlie ne - ode ¥
README.md file, it
is displayed here Test
(with markdown (2 Clone ?)
i To copy the repo’s URL.
rendermg)- Here you can see the content of your README.md file. HTTPS SSH GitHub CLI Py P
This is a good place to put a description of your project. U

https://github.com/sibgit/test.git r_l;l

Use Git or checkout with SVN using the web URL.

[7) Download ZIP

Cloning a repo: HTTPS vs. SSH

HTTPS and SSH are two different network protocols that machines can use to communicate.

When cloning (or adding a remote) via:
Gotofle Addfile~
= HTTPS, you will need to provide a personal access token (PAT) as
authentication credential. Clone ®
* If the repo is public, credentials are only needed to push data HTTPS SSH GitHub CLI
to the remote (nOt to pull) https://github.com/sibgit/test.git LI;I

* Your local Git repo will in principle store the login credentials, et it o1 eheckout with SUN wein e web UL
se Il or checkout wi using the we .

so you need to provide them only once.
* Instructions on how to generate a PAT can be found in the
helper slides of exercise 4.

Ga o filo Add file +

= SSH, you will need to add your public SSH key to your GitHub 53 Clone ®
account. HTTPS SSH GitHub CLI

You don't have any public SSH keys in your GitHub
account. You can add a new public key, or try cloning this

[i itory via HTTPS.
Reminder: command to clone a repo (here via https) epesienve

$ git clone https://github.com/sibgit/test.git

git@github.com:sibgit/test.git Ll;]

Use a password-protected SSH key.

e
S
Q
e
©
(S
>
S
(1)
i
o
()
S
K
Q.
Q.
-
(Vs

https://github.com/sibgit/test.git

GitHub Pull Requests (PR)

Pull Requests * (PR) are a way to ask someone to integrate your changes (i.e. merge your branch) into another branch.

= PRs perform a branch merge operation on the GitHub remote (rather than on your local copy).
= Typically, a PR is created to merge a feature branch into the main/master branch on the remote.

() Actions B Projects 7 Wiki @ Security |~ Insights 1 Settings

Why use PRs instead of a local merge (and push)?

& General Default branch
. Access The default branch is considered the “base” branch in your repository, against which all pull requests and code commits are
| | Th e b ra n C h yo u Wa nt to m e rge | nto 2 Collaborators automatically made, unless you specify a different branch.
(e.g. main/master) is protected **, R Moderation opions Vo maser s 2
Code and automation
= Gives the opportunity to the repository I i:h Branch protection rules T
. ags
OW n e r(S) to rEVIeW c ha nges befo re ® Actions v Define branch protection rules to disable force pushing, prevent branches from being deleted, and optionally require status
m e rgi ng th e m . & Webhooks checks before merging. New to branch protection rules? Learn more.
Environments master Currently applies to 1 branch | Edit Delete
. Pages
= Makes it easy to merge changes from a = .
Security Example of protection rules.

forked *** repository.

(@) Code security and analysis
/22 Deploy keys

Secrets v

Integrations
20 GitHub apps

= Email notifications

* On GitLab, pull requests are called Merge Requests (MR), but it’s the exact same thing.

** Protected branches are branches where push operations are limited to users with enough privileges.

*** A fork is a copy of an entire repository under a new ownership.

Protect matching branches

Require a pull request before merging
When enabled, all commits must be made to a non-protected branch and submitted via a pull request before they can be
merged into a branch that matches this rule

Require approvals
When enabled, pull requests targeting a matching branch require a number of approvals and no changes requested
before they can be merged

Required number of approvals before merging: 1 =

[] Dismiss stale pull request approvals when new commits are pushed
New reviewable commits pushed to a matching branch will dismiss pull request review approvals.

[] Require review from Code Owners
Require an approved review in pull requests including files with a designated code owner.

How to open a Pull Request on GitHub: step-by-step Vo

! u y ~~~‘~~~

{_th; il hegy ->~-.

~~~~~~l~$ In e ed to d ~~~7
1. On the project’s page on GitHub, go to the Pull requests tab. - \S':Ci eq ,° J
O Search or jump to... Pull requests Issues Marketplace Explore ~~~~~~~~III

O sibgit/ sibgit.github.io  pusii

¢35 Code

() lssues

19 Pull requests

iC ¢ Unwatch 17 ~

(») Actions [ Projects 0 Wiki @) Security |~ Insights

)

Pull requests tab

Label issues and pull requests for new contributors Dismiss

Now, GitHub will help potential first-time contributors discover issues labeled with @R R

Pending pull
requests will be
listed here...

¥ manta-dev had recent pushes 8 minutes ago

Compare & pull request

Filters ~ | Q_ is:prisiopen O Labels 9 o Milestones 0 New pull request c 2 . CI |ck on
_ , , | New pull request.
0 i9 00pen . 25Closed Author ~ Label ~ Projects ~ Milestones ~ Reviews ~ Assignee ~ Sort ~

=

1

There aren’t any open pull requests.

You could search all of GitHub or try an advanced search.



§9 Pullrequests () Actions [ Projects  [J Wiki () Security |~ Insights If there are conflicts' you probably need to

rebase your branch and resolve them.

3. Select the branches to merge:
Comparing changes

Te~o Choose two branches to see what's changed or to start a new pull reque

you need to, you can also compare across forks.

t:l base: maSter i 'e Compare: mﬂnta-dEV i 1N base: master+ = & | compare: manta-dev v v Able to merge. These branches can be automatically merged. u

Z/\ Z/\ -
-
-
-

U U Discuss and review the changes in this comparison with others. Learn about pull requests Create pull request

Branch to Branch to merge
. . . -0- 2 commits 2 files changed A 1 contributor
merge into (your contribution)
o Commits on Mar 10, 2022
. . . fhdd i-nft-) on habitat and behavior for manta ray o T <
List of commits that will be merged I:> ) sttt commited 18 minis a0
In this example, there are 2 commits on branch @ st o e @ e o
“manta-dev” that will be merged into “master”.
Showing 2 changed files with 14 additions and 6 deletions. Split  Unified

»

Summary of changes introduced I:> @ 0 L i S T (i

by the pull request. - e s
4 4 <link rel="stylesheet" href="styles.css">
Green lines = new content. C e
Red lines = deleted content. 7 <h1>77 Animal name</hi>
T + <hl>Manta Ray - <i>Mobula sp.</i></h1>
8 8
9 - <img src="?? image-filename">
9 + <img src="images/manta_ray.jpg">
10 10
11 11 <h3>Habitat and distribution</h3>
12 12 <p>
13 - ?? Replace this with a few lines on the animal's habitat and distribution.
13+ Mantas are found in tropical and subtropical waters in all the world's major oceans,
14 + and also venture into temperate seas.
15 + <br>
4' C“Ck On Create pu" request. 16 + The furthest from the equator they have been recorded is North Carolina in the
17 + United States, and the North Island of New Zealand.
18 + <br>
19 + They prefer water temperatures above &8 °F (2@ °C)

14 20 </p=




Open a pull request

Create a new pull request by comparing changes across two branches. If you need to, you can also compare across forks.

8}

5. Optionally, enter =)
a message for the
people that will
review your pull
request.

base: master~ & = compare: manta-dev ~ + Able to merge. These branches can be automatically merged.

Manta dev
Write Preview H B I = <& & = i= @ 2 «-

| worked hard to add these awesome changes to the manta ray page.
Please merge :smiley_cat:

A

Attach files by dragging & dropping, selecting or pasting them. (M3 ]

Create pull request -

i)

6. Submit your pull request by clicking
Create pull request.

@ Remember, contributions to this repository should follow our GitHub Community Guidelines.

Reviewers

@ sibgit

Assignees

No one—assign yourself

Labels

MNone yet

Projects

MNone yet

Milestone

MNo milestone

Development

Use Closing keywords in the description to
automatically close issues



The pull request is now created,
and awaiting approval from an

authorized person.
(e.g. the repo owner or a colleague)

Merging is blocked, because
someone has to approve your PR.

{9 Pull requests 1 (») Actions [ Projects [ Wiki (@) Security |~ Insights

Manta dev #27

)9Ol robinengler wants to merge 2 commits into master from manta-dev ([

(3 Conversation 0 o Commits 2 [l Checks 0 Files changed 2
:h_ robinengler commented now Collaborator

| worked hard to add these awesome changes to the manta ray page.
Please merge =

E; sibgit added 2 commits 31 minutes ago

o @ Add info on habitat and behavior for manta ray

. @ Add image for manta ray

Add more commits by pushing to the manta-dev branch on sibgit/sibgit.github.io.

<7 This branch has not been deployed

No deployments

Review required

At least 1 approving review is required by reviewers with write access. Learn more.

Merging is blocked

Merging can be performed automatically with 1 approving review.

Merge pull request - or view command line instructions.

deaelbl

0677d8cC



ch or jump to... Pull requests Issues Marketplace Explore

The reviewer of your PR will @ sibgit/ sibgit.github.io e QP ouman 17 -
then have a look at your changes (ot @lssws 1y Pullmquests 1 Acions ([ Piecs (WK Seorly | isghis g Setinge

(the modifications introduced
with your commits) and approve
them or request changes.

Label issues and pull requests for new contributors Dismiss

Now, GitHub will help potential first-time contributors discover issues labeled with (el

Filters ~ Q_ is:pris:open O Labels 9 e Milestones 0 New pull request

[J 1% 10pen . 26 Closed Author - Label ~ Projects ~ Milestones ~ Reviews ~ Assignee ~ Sort ~
————————————————————————I
: [ 11 Manta dev I
#27 opened 2 minutes ago by robinengler « Review required I

Manta dev #27

pyYelELlY robinengler wants to merge 2 commits into master from manta-dev (0

[ tion 0 Commits 2 Fl Checks 0 %) Files changed 2 . .
) Conversation -o- Commits [ Checks iles change: 0/2 files viewed @ e

* robinengler commented 4 minutes ago Gollaborator | () --- . .
u Finish your review x
| worked hard to add these awesome changes to the manta ray page.

Please merge &

Write Preview H B 7 i= <& & = i= @ 2 «-~

E; sibgit added 2 commits 35 minutes ago
Looking good, thanks for the contribution !

-0 é Add info on habitat and behavior for manta ray deaelbl
-0 @ Add image for manta ray 0677d8C
Add more commits by pushing to the manta-dev branch on sibgit/sibgit.github.io. #

Attach files by dragging & dropping, selecting or pasting them.

7 This branch has not been deployed
No deployments O Comment

e | Submit general feedback without explicit approval.

|
Review required ILAdd your review 1 g Approve

At least 1 approving review is required by reviewers with write access. Learn more. p—————— | Submit feedback and approve merging these changes‘
Al
L Request changes
° Merging is blocked QO Req . g .
Merging can be performed automatically with 1 approving review. Submit feedback that must be addressed before merging.
5

Merge pull request ~ or view command line instructions Submit review




Manta dev #27

j9Rel:ELly robinengler wants to merge 2 commits into master from manta-dev (0

{3 Conversation 1 -o- Commits 2 [l Checks 0 Files changed 2

i
-

robinengler commented 7 minutes ago

| worked hard to add these awesome changes to the manta ray page.
Please merge &

E; sibgit added 2 commits 38 minutes ago

o @Add info on habitat and behavior for manta ray

S @Add image for manta ray

@ ° sibgit approved these changes 1 minute ago

sibgit left a comment

Looking good, thanks for the contribution !

Add more commits by pushing to the manta-dev branch on sibgit/sibgit.github.io.

This branch has not been deployed
No deployments

Collaborator @ wee

deaeibl

0677d8c

View changes

Owner | (@) =+

‘_.
‘ ° Changes approved

1 approving review by reviewers with write access. Learn more.
+  1approval

This branch has no conflicts with the base branch
Merging can be performed automatically.

Merge pull request Rl or view command line instructions.

Show all reviewers

Manta dev #27

i9NO/ = robinengler wants to merge 2 commits into master from manta-dev )

) Conversation 1 -o- Commits 2 [l Checks 0 Files changed 2

il
-

robinengler commented 9 minutes ago

| worked hard to add these awesome changes to the manta ray page.
Please merge &

£; sibgit added 2 commits 40 minutes ago

O & Add info on habitat and behavior for manta ray

-0 & Add image for manta ray

@ ° sibgit approved these changes 3 minutes ago

sibgit left a comment

Looking good, thanks for the contribution !

@ @ sibgit merged commit a8581be into master 40 seconds ago

Collaborator | (Z) «++

dea®1bl

0677d8c

View changes

Owner | (@) =+

Revert

(
“  Pull request successfully merged and closed
‘ You're all set—the manta-dev branch can be safely deleted.

Delete branch

A

by clicking Merge pull request.

Now that the pull request is approved, it can
be merged (either by the reviewer or by you)

T

Completed ! Optionally, you can delete your branch
on the remote (this will not delete it locally).




Repository settings (only available if you are the owner).

ch or jump to... Pull requests Issues Marketplace Explore

@ sibgit/ sibgit.github.io  Pubic & Pi

<> Code () Issues 19 Pull requests (v) Actions [ Projects [0 Wiki () Security |~ Insights 61 Settings

% General Who has access
Here yOU can SEt dlve rse Access PUBLIC REPOSITORY ® DIRECT ACCESS A Click here to
Sett| ngs concern | n our © I Ax Collaborators This repository is public and visible 26 have access to this repository. add a
g g y Gy Moderation options o to anyone. 17 collaborators. 9 invitations. COI Iaborator

Code and automation

* Invite collaborators. ) v e
: © Tags Manage access
e Setup branch protection.

(») Actions v

repository, e.g. : Manage u

& Webhooks [0 Selectall Type =

Environments
Q Find a collaborator...

E3 Pages
Security ann alinefuchs '
Pending Invite (0] W]
. X O u=n Awaiting alinefuchs’s response ¢ G u
(@) Code security and analysis
/£ Deploy keys .
AmirKH
O , , ) Pending Invite ([J (W]
Secrets “ Awaiting AmirKhalilzadeh's response
Integrations a_u»  AurelieLen ’ a
Pending Invite (0]
i O ﬁ Awaiting AurelieLen’s response 9 G U
399 GitHub apps
= Email notifications . . Burulca .
’ burulca « Collaborator u
christec5
O S ) ) ] Pending Invite (CJ (W]
Awaiting christec5’s response




3]
Other GitHub features (some of them)
O Search or jump to...

bait/ sibait.aithub.i Group issues and Setup automated security scanning
. . Public one
S — PR by topics. for your code (vulnerability check).
“Home” of
your repo Continuous integration Add a wiki for Statistics about your
(repo content) Issue tracker (automated testing) your project. repo’s activity.
o S A S -

¢> Code () lssues 19 Pull requests () Actions f Projects ] Wiki @ Security |~ Insights 61 Settings

Pulse Network graph
Contributors
Timeline of the most recent commits to this repository and its network ordered by most recently pushed to.

Community

Owners Feb Mar
Community Standards

19 17 10

Traffic P —

sibgit

. [ ey

Commits

Code frequency

Asp-eIueLw

Dependency graph
Network

Forks




exercise 4

The Awesome Animal Awareness Project

@ This exercise has helper slides



Exercise 4 help: branch — rebase — merge sequence

: ) tidevalice <4 yeti-dev-alice
. . yeti-dev-ali
t eti-dev L i -
{master @y master o () <@ yeti-dev z i
master = (J ayeti-dev
clone
> do work...
>

h h

GitHub i

git

clone

7 yeti-dev-bob

: < yeti-dev-bob
master yeti-dev -
>@e master =) (f € yeti-dev
>

fetch

checkout do work...




0 = £ yeti-dev-alice
4@ yeti-dev-alice 4 yeti-dev & yeti-dev

master ) (J G yeti-dev master ) master >

merge/rebase push

0

yeti-dev-bob = - GitHub
yeti-dev-bob () () &yeti-dev  pull yetidey
master = master = .
rebase
>
AR
2/

T i —

=
=7

/)
igg




[ +d
Exercise 4 help: generating a “personal access token” on GitHub

In order to push data (commits) to GitHub, you will need a personal access token (PAT).

1. In your user profile (top right),
click on Settings.

2. In your Account settings,
click on Developer settings.

3. In Developer settings, click
on Personal access tokens.

Signed in as
robinengler

(©) Setstatus

Your profile

Your repositories
Your codespaces
Your organizations
Your projects

Your stars

Your gists

Upgrade
Feature preview
Help

Settings

Sign out

Account settings
Profile

Account
Appearance
Account security
Billing & plans
Security log
Security & analysis
Sponsorship log
Emails

Notifications
Scheduled reminders
SSH and GPG keys
Repositories
Packages
Organizations
Saved replies

Applications

I > Developer settings

Settings / Developer settings

GitHub Apps

OAuth Apps

I > Personal access tokens

GitHub Apps

Want to build something that integrates with and extends GitHub? Register|
on the GitHub API. You can also read more about building GitHub Apps in

Go to next page




[ +d
Exercise 4 help: generating a “personal access token” on GitHub

4. Add a Note (description) to your token and select 5. Copy the personal access token to a safe locations

the repo scope checkbox. The click Generate token. (for now maybe in a text file, but ideally in a password
manager). You will not be able to access it again later.

New personal access token
Personal access tokens Generate new token Revoke all

Personal access tokens function like ordinary OAuth access tokens. They can be use

. . L Tokens you have generated that can be used to access the GitHub API.
over HTTPS, or can be used to authenticate to the API| over Basic Authentication. ¥ g

Note Make sure to copy your personal access token now. You won't be able to see it again!

E>> repo access token

What's this token for?
+ ghp_9sypMu1uoJH14JA74MVMiRWEWUX5a021KjAP (0] Delete
Expiration *
30 days 4 The token will expire on Fri, Nov 5 2021

Select scopes

Scopes define the access for personal tokens. Read more about OAuth scopes.

6. When you will push content to GitHub for the first

E>> .4 repo Full control of private repositories
time in the project, you will be asked for your user

repo:status Access commit status

repo_deployment Access deployment status name and password. Instead of the password, enter
public_repo Access public repositories the personal access token you just created.

repo:invite Access repository invitations

security_events Read and write security events

E>» Generate token Cancel




Thank you for attending this course Swiss Institute of

Bioinformatics



