
www.sib.swiss

Robin Engler
Vassilios Ioannidis

Lausanne, 12-14.10.2022

Version control with Git – optional modules
(Git LFS, Git submodules)

git submodules
The "symlink" of Git repositories

git_resources_webpage

│

├── .git

├── glitter-cursor

│ ├── .git

│ ├── glitter.js

│ └── README.md

├── git_logo.png

├── README.md

└── references.html

What are submodules ?

 Git submodules allow keeping a Git repository as a subdirectory
of another Git repository while version controlling the version
(latest commit) of the nested repository.

Submodule

Super-project

Main repository / super-project (repo containing the submodule)

2f0f08e

Subproject (project used as submodule in the super-project)

 The “super-project” and the submodule remain
independent repos, and have independent remotes.

What are submodules (continued)

 Git submodules are a reference to another
repository at a specific commit. The super-
project does not keep track of individual
files inside the submodule.

On GitHub/GitLab, submodules are shown with the syntax:
<submodule dir name>@<commit hash>

git_resources_webpage

│

├── .git

├── glitter-cursor

│ ├── .git

│ ├── glitter.js

│ └── README.md

├── git_logo.png

├── README.md

└── references.html

Local repo:

Files tracked by the super-project
(main project)

Files tracked by the subproject
(here used as a submodule)

 Because the submodule is fixed at a specific
commit (unless explicitly changed), the
maintainer of the super-project has full control
of which revision of the submodule’s code
they are using.

Use cases: when to use submodules

 To include external code, i.e. code maintained by someone else (e.g. on GitHub/GitLab), into your
project. With Git submodules you can easily integrate it, get updates from the upstream, and stay in
control of when the external code should be updated. Can also be used to re-use one of your own
repos in multiple projects.

 To make public only a part of a project. You can put the part of your code/files that you want to make
public in a submodule (with public access), and keep the rest of the code in a private repository.

 Large project that uses multiple subprojects maintained independently.

Private_files

│

├── .git

├── Public_files

│ ├── .git

│ ├── public.doc

│ └── public.code

├── private.py

└── also_private.md

Alice uses a library maintained
by Bob as a submodule

Alice wants to mix public
and private files in a project.

Big_pipeline

│

├── .git

├── Tool_A

│ ├── .git

│ └── Tool_A

├── Tool_B

│ ├── .git

│ └── Tool_B

└── Tool_C

├── .git

└── Tool_B

Large pipeline with multiple
collaborators.

Alice’s_cool_utility

│

├── .git

├── Bob’s_library

│ ├── .git

│ ├── John’s_library

│ │ └── .git

│ ├── src.c

│ └── header.h

├── main.py

├── README.md

└── setup.py

Submodules
can be
nested!

 Don’t use submodules when not really needed, monolithic repositories are simpler
to maintain.

 If you have a sub-project that you want to use in multiple projects, it might be more
efficient to create a package instead. Most programming languages have a dedicated
package managers/repositories (CRAN for R, npm for javascript, PyPI for Python, etc).

 If you simply want to have a nested Git repos on your local machine (but with no link
between them), you can simply add the nested repo to the .gitignore file of the
higher-level repo.

When NOT to use submodules

git_resources_webpage

│

├── .git

├── glitter-cursor

│ ├── .git

│ ├── glitter.js

│ └── README.md

├── git_logo.png

├── README.md

└── .gitignore glitter-cursor/

test_outputs.tmp

If all you want is keeping a Git repo inside another one on
your local computer with no link between them… you don’t

need submodules – save yourself the hassle!

This will:

• Add a new directory named after the submodule’s repo name.

• Download the content of the submodule corresponding to the latest commit
(on the default branch) into that directory.

• Create a .gitmodules file at the root of the super-project.

• Initialize the submodule in the .git/config file.

git submodule add <URL of submodule repository>

Adding/registering a submodule
 If you add multiple submodules, you will

have multiple entries in .gitmodules .

 .gitmodules should be version
controlled, so that other people who clone
the project know where the submodule
projects are from (Git stages this file by
default when adding a new submodule).

[submodule ”my-submodule"]

path = my-submodule

url = https://github.com/some-user/my-submodule.git

.gitmodules

To add/register a new submodule inside a Git repo:

[submodule “my-submodule"]

url = https://github.com/some-user/my-submodule.git

active = true

“active = true” --> module is initialized

Local path of submodule
URL of submodule

.git/config

Submodule with custom name:

 Set custom name when adding submodule:
git submodule add <URL> <name>

 Rename an exiting submodule:
git mv <submodule name>

<submodule new name>

https://github.com/some-user/my-submodule.git
https://github.com/sibgit/glitter-cursor.git

Adding a submodule: example

Main repository / super-project
(repo to which a submodule is added)

Subproject
(used as submodule in the super-project) 2f0f08eAdding “glitter-cursor” as a submodule to “git_resources_webpage”

Repo is currently at
commit

git submodule add https://.../glitter-cursor.git

git commit -m "Add submodule glitter-cursor“

git push

Icon and syntax indicating a submodule, which is pointing at 2f0f08e

When a new submodule is added, it points at the latest commit of the submodule’s online repository.

https://.../glitter-cursor.git

Su
p

p
le

m
e

n
ta

ry
m

at
e

ri
al

…
How Git keeps track of the submodule’s version: some more details.
Adding “glitter-cursor” as a submodule to “git_resources_webpage”

[remote "origin"]

url = https://github.com/sibgit/git_resources_webpage.git

fetch = +refs/heads/*:refs/remotes/origin/*

[branch "main"]

remote = origin

merge = refs/heads/main

[submodule "glitter-cursor"]

url = https://github.com/sibgit/glitter-cursor.git

active = true

$ cd git_resources_webpage

$ git submodule add https://github.com/sibgit/glitter-cursor.git

Cloning into '/home/.../git_resources_webpage/glitter-cursor'...

remote: Enumerating objects: 9, done.

remote: Counting objects: 100% (9/9), done.

remote: Compressing objects: 100% (6/6), done.

remote: Total 9 (delta 0), reused 3 (delta 0), pack-reused 0

Receiving objects: 100% (9/9), done.

Git submodule add does the following:

• Create a new directory named “glitter-cursor”.

• Download the content of “glitter-cursor” corresponding
to the latest commit (on the default branch).

• Create a .gitmodules file.

• Initialize the submodule in the .git/config file.

[submodule "glitter-cursor"]

path = glitter-cursor

url = https://github.com/sibgit/glitter-cursor.git

Local path of submodule

URL of submodule

Section that
was added

“active = true” --> module is initialized

$ git status

Changes to be committed:

(use "git restore --staged <file>..." to unstage)

new file: .gitmodules

new file: glitter-cursor

$ git diff --cached

diff --git a/.gitmodules b/.gitmodules

--- /dev/null

+++ b/.gitmodules

@@ -0,0 +1,3 @@

+[submodule "glitter-cursor"]

+ path = glitter-cursor

+ url = https://github.com/sibgit/glitter-cursor.git

diff --git a/glitter-cursor b/glitter-cursor

--- /dev/null

+++ b/glitter-cursor

@@ -0,0 +1 @@

+Subproject commit 2f0f08e991d828dd27cf399c0b88edaaa48a2bf9

• The submodule is tracked/added as a “virtual file” to the index.

• This “virtual file” contains the commit ID (SHA-1 checksum) to which
the submodule is pointing (and nothing else).

• Individual files in the submodule are not tracked by the super-project.

How does Git keep track of the submodule’s version ?

2f0f08e

https://github.com/sibgit/git_resources_webpage.git
https://github.com/sibgit/glitter-cursor.git
https://github.com/sibgit/glitter-cursor.git

git clone --recurse-submodules <repository>

Clone a repository with submodules

git clone <repository>

git submodule init

git submodule update

 After cloning a repository that contains submodules, there
will only be an empty directory for the submodules: their
content is not automatically downloaded!

 You have to initialize* the local configuration files with:
git submodule init

 Now the content of submodule(s) can be retrieved** with:
git submodule update

 --recursive / --recurse-submodules means that the
command also applies to nested submodules (submodules
within submodules).

git clone <repository>

git submodule update --init --recursive

or

or
Shortcut to clone, initialize and update
all submodules.

Notes:

• By default, the commands git submodule init/update apply to all submodules of a project. To apply them only to a specific
submodule, the name of the submodules can be passed: e.g. git submodule init <submodule name>

• What does *initialize a submodule mean, and what exactly does git submodule init do?
When Git initializes a submodule, it creates an entry for it in the .git/config file of the
superproject repo and marks it as “active = true”.
When working on a large project with many submodules, this makes it e.g. possible to
only initialize those submodules that are really needed for your work.

• The meaning of **update in git submodule update is to fetch updates in submodules and update the working tree of the submodules
to the revision expected by the superproject. It does not mean to update the submodules to their latest version.

[submodule "glitter-cursor"]

active = true

url = https://github.com/sibgit/glitter-cursor.git

.git/config

This is what you will want
to use in most situations.

Clone a repository with submodules: example

Online main repository / super-project
(repo that contains a submodule)

git clone
https://.../git_resources_webpage.git

Cloning “git_resources_webpage” that contains the submodule “glitter-cursor”.

submodule, pointing at 2f0f08e

git_resources_webpage

│

├── glitter-cursor

├── git_logo.png

├── README.md

└── references.html

Local copy of repository

git submodule update

–init --recursive

Directory is empty !

git submodule init

git submodule update

git_resources_webpage

│

├── glitter-cursor

│ ├── glitter.js

│ └── README.md

├── git_logo.png

├── README.md

└── references.html

Initializes/activates the
submodule(s) in .git/config

Downloads submodule content

Now the files of the
submodule are
locally available.

git clone --recurse-submodules

https://.../git_resources_webpage.git
Shortcut !

https://.../git_resources_webpage.git
https://.../git_resources_webpage.git

Su
p

p
le

m
e

n
ta

ry
m

at
e

ri
al

…

$ cd glitter-cursor

$ git status

HEAD detached at 2f0f08e

$ git switch main

Cloned submodules are (by default) in detached HEAD state

git_resources_webpage

│

├── .git

├── glitter-cursor

│ ├── .git

│ ├── glitter.js

│ └── README.md

├── git_logo.png

├── README.md

└── references.html

 After cloning a repo with submodules, the
submodules are in detached HEAD state.

 To make it point to a branch you have to
explicitly checkout (switch to) that branch.

Commit the submodule
is currently pointing at.

To display the revision of the submodule to which a super-project is currently pointing:

$ git submodule status

2f0f08e991d828dd27cf399c0b88 glitter-cursor (heads/main)

Update a repository with submodules (git pull on the super-project)

Shortcut !

Similarly to git clone, running git pull in the super-project (the main project that hosts the submodule)
does not automatically update the submodules’ content. You need to either:

git pull --recurse-submodules

git pull

git submodule update --init --recursive

or

Downloads the submodule’s
updated content

git_resources_webpage

│

├── .git

├── glitter-cursor

│ ├── .git

│ ├── glitter.js

│ └── README.md

├── git_logo.png

├── README.md

└── references.html

git_resources_webpage

│

├── .git

├── glitter-cursor

│ ├── .git

│ ├── glitter.js

│ └── README.md

├── git_logo.png

├── README.md

└── references.html

git_resources_webpage

│

├── .git

├── glitter-cursor

│ ├── .git

│ ├── glitter.js

│ └── README.md

├── git_logo.png

├── README.md

└── references.html

git pull

Submodule files not
in sync with the
revision the super-
project is pointing at.

git submodule update

--init --recursive

git pull --recurse-submodules

Files of the
submodule are
now updated.

b23ad08ef91d34

2f0f08e

2f0f08e f10b7d7

f10b7d7f10b7d7

2f0f08e

b23ad08

Commit ID of super-project

Commit ID of
submodule actual
content

Commit ID of
submodule
the super-
project is
pointing at.

This is what you will want
to use in most situations.

Important: these
are commands to
run in the super
project!

 Submodules are regular Git repos. Once inside, you can run
the same Git commands as you would on any repo.

Working with submodules

$ git status # run in the super-project’s root!

Changes not staged for commit:

modified: glitter-cursor (new commits)

$ git status # run in the super-project’s root!

Changes not staged for commit:

modified: glitter-cursor (modified content,

untracked content)

Example: files were added/modified in the submodule.

Example: one or more new commits in submodule.

$ cd glitter-cursor

We are now in the submodule directory.

$ git status

$ git add ...

$ git commit ...

$ git push

 The super-project does not keep track of individual files in
the submodule: it only keeps track of the commit to which
it points.

However, the super-project will detect when changes are
made inside a submodule (but not exactly which changes).

Example:

 To run the same tasks on multiple submodules, there is the
handy command:

git submodule foreach “git command”

Example:

$ git submodule foreach "git status"

$ git submodule foreach "git log --oneline"

Entering 'glitter-cursor'

2f0f08e (HEAD -> main) Add glitter effect code

841e83a Update README.md

b0b66f8 Initial commit

Making changes to a submodule (modifying the content of the submodule)

$ git status

On branch main

Changes not staged for commit:

modified: glitter-cursor (new commits)

$ git diff

diff --git a/glitter-cursor b/glitter-cursor

--- a/glitter-cursor

+++ b/glitter-cursor

-Subproject commit 2f0f08e991d828dd27cf399c0b88edaaa48a2bf9

+Subproject commit f10d7b772342c6a9f31390af4f8a16f71c440777

$ git pull

New commit to which the
submodule is now pointing

We proceed as follows:

1. Make the desired changes in the submodule.
If needed, pull/push the changes from/to the
submodule’s remote.

2. The commit ID (hash) of the submodule has now changed,
so we must update the super-project by making a new
commit that will indicate the update in commit ID of the
submodule.

$ git add glitter-cursor # go back to the super-project.

$ git commit -m "Update submodule glitter-cursor“

$ git push

Commands run in the submodule:

Commands run in the super-project:

$ git add ...

$ git commit ...

$ git push

$ cd glitter-cursor

$ git checkout ...

Let’s assume we want to modify the content of a submodule, for instance:

• Update the submodule’s content to a newer version.

• Make changes to files in the submodule.

• Point the submodule at an older version.

Making a new commit in the
super-project

git_resources_webpage

│

├── .git

├── glitter-cursor

│ ├── .git

│ ├── glitter.js

│ └── README.md

├── git_logo.png

├── README.md

└── references.html

f10d7b7

Main repository / super-project (repo containing the submodule)

Subproject
(used as submodule in the super-project)

git push

f10d7b7git push2f0f08e

2f0f08e

Making changes to a submodule
How things look on the online pages of the remotes

Su
p

p
le

m
e

n
ta

ry
m

at
e

ri
al

…

$ git push --recurse-submodules=check

The following submodule paths contain changes that

cannot be found on any remote:

submodule-name

Please try

git push --recurse-submodules=on-demand

$ git push --recurse-submodules=on-demand

Pushing submodule 'submodule-name'

...

Pushing super-project (main project)

...

--recurse-submodules option: automated submodules push

To avoid accidentally forgetting to push changes in a submodule when pushing in the super-project:

 : safeguard that will make your push fail is there are
any “non-pushed” changes in submodules.

 : automatically push all submodules when
pushing the super-project.

 These options can also be permanently set in the Git configuration of the super-project:

git push --recurse-submodules=check

git push --recurse-submodules=on-demand

$ git config push.recurseSubmodules check

or

$ git config push.recurseSubmodules on-demand
Note: we are not using the --global option, so
this setting only affects the current repo.

 Important: all these commands are run in the context (directory) of the super-project, not of the submodule!

Examples:

git_resources_webpage

│

├── .git

├── glitter-cursor

│ ├── .git

│ ├── glitter.js

│ └── README.md

├── git_logo.png

└── references.html

glitter-cursor

│

├── .git

├── glitter.js

└── README.md

f10d7b7

2f0f08e

f10d7b72f0f08e

1. Bob, the maintainer of the “glitter-cursor” repo, pushes a new update.

2. Alice updates her submodule in the “git_resources_webpage” project
with Bob’s new update.

2f0f08e f10d7b7

$ git status

modified: glitter-cursor (new commits)

$ git add glitter-cursor

$ git commit -m “Update submodule to latest version"

To complete the update, Alice updates the super-project with a new
commit that will make it point to the submodule commit: f10d7b7

$ git submodule update --remote

Submodule path 'glitter-cursor': checked out f10d7b77...

$ git push

Pulling updates for a submodule
Updating a submodule to its latest commit

git submodule update --remote <submodule name>

If no submodule is specified, all
submodules are updated

Su
p

p
le

m
e

n
ta

ry
m

at
e

ri
al

…

To pull the latest changes for a submodule:

$ git submodule update --remote --merge

git submodule update --remote <submodule name>

$ cd my-submodule

$ git switch main # If in DETACHED HEAD state.

$ git pull

Alternatively, the pull in the submodule can also be done manually:

[submodule "glitter-cursor"]

path = glitter-cursor

url = https://.../glitter-cursor.git

branch = main

.gitmodules

• By default Git will try to pull the changes from the master branch. To
pull from another branch, you have to specify it in .gitmodules
by setting the parameter branch.

• If no submodule is specified, all submodules are updated.

• If the local submodule has diverged from its remote (e.g. you made some commits),
--merge/--rebase must be added to the command to either merge or rebase.

• After the content of the submodule is updated, the update in its
version (commit hash) must still be committed. $ git status

modified: my-submodule (new commits)

$ git add my-submodule

$ git commit -m “Update submodule to latest version"

Pulling updates for a submodule (command details)
Updating a submodule to its latest commit

https://.../glitter-cursor.git

exercise 5
The Git reference web page gets

better with submodules

git LFS
large file storage

Tracking large files together with code is an attractive proposition, e.g. in scientific applications:

 Data analysis/processing pipeline.

 Machine learning applications (training data and code in the same place).

Tracking large files can be useful…

 Git was designed for tracking code – i.e. relatively small text files.

 Adding large files to a Git repo is technically possible, however:

• Since Git is a distributed VCS, each local copy of a repository will contain a full copy of all versions
of all tracked files. Therefore, adding large files will quickly inflate the size of everyone’s repository,
resulting in higher disk space usage (on local hosts).

• Git’s internal data compression (i.e. packfiles) is not optimized to work with binary data (e.g. image
or video files). Each change to a binary file will (more or less) add the full size of the file to the repo,
taking disk space and slowing down operations such as repo cloning or update fetching.

• Commercial hosting platforms impose limits on the size of files that can be pushed to hosted Git
repos (GitHub: 100 MB, GitLab: no file limit but 10 GB repo limit).

… but Git does not work well with large files

The solution*: Git LFS

Git LFS (Large File Storage) is an extension for Git,
specifically designed to handle large files.

Basic principle: large files are not stored in the Git
database (the .git directory), instead:

 Only a reference/pointer to large files is
stored in the Git database.

 The actual files are stored in a separate
repository or “object store”.

Open source project: https://git-lfs.github.com
First released in 2015.

* Alternatives to Git LFS exist, but Git LFS is the most popular.

Not all hosting services support Git LFS, and when they do,
storage space is limited (additional space may be purchased).

https://git-lfs.github.com/

Su
p

p
le

m
e

n
ta

ry
m

at
e

ri
al

…

GitHub.com GitLab.com

Max file size 100 MB No size limit

Max repo size 1 GB (recommended)
2 GB to 5 GB (max)

10 GB

LFS max file size 2 GB No size limit (not sure)

LFS object store 1 GB storage for free

1 GB/month free bandwidth (download)

5 USD/month for each additional “pack” of 50
GB storage + 50 GB bandwidth

60 USD/year per 10GB

GitHub and GitLab disk quotas, file size limit and pricing

last updated on Feb 2021

You can also setup a Git LFS object store on third-party storage provider -but you need to set it up yourself
and it is not a trivial task:

• SWITCHengines (220 CHF/TB*year) – no backup (need to organize your own).
• AWS (amazon web services).

 If your institution is running their own instance of GitLab, you can check with them if they offer LFS support
(and how much space you can have their.

 Here are limits for 2 popular commercial Git hosting providers:

Bob’s computer

LFS object
store

Git hosting service

Remote storage

Generally hosted by the
Git repo hosting service,

but not necessarily.

 Only a reference/pointer to large files is stored in the Git database.
 The large files themselves are stored in a separate repository or “object store”.
 Large files are downloaded only when needed.
 Transparent: only 1 extra command is needed for this workflow (git lfs track).

git push
git clone

git fetch

Working directory
[project.git]

Alice’s computer

git lfs track

<file name>

git add

Git LFS cache [.git/lfs]

Actual file

Git repo [.git]

Pointer to file,
very lightweight

Git LFS workflow overview

dev-a

m
as

te
r

git commit

git lfs track

<file pattern> Because Bob has only checked-
out the master branch, Git LFS
only downloaded one file

Complete Git history
of project

d
ev

-b

d
ev

-a

m
as

te
r

LFS object store
content

Git database
content

Remote storage

Alice’s local repo
Alice just started to work on the
project. She cloned the repo and
created the “dev-a” branch.

Local Git repositories

Bob’s local repo
Bob contributed to the project
since a while. He’s currently
working on “dev-b”.

git checkout dev-b git lfs purge

Large file. Colors represent
different versions or different
files.

Git LFS: initial setup

 One time setup: to be executed only once per user/machine, after Git LFS was installed.

(this adds LFS Git filters to your global configuration file ~/.gitconfig)

git lfs install

Git LFS: tracking files

 Adding files to Git LFS:

git lfs track <file name or pattern>

$ git lfs track file_1.csv

$ git lfs track file_2.csv file_3.csv

$ git lfs track "*.fasta"

$ git lfs track "*.img"

$ git lfs track "large_file_?.txt"

$ git lfs track "subdir/*.jpg"

 Examples:

 When using a file pattern (glob pattern), all files matching the pattern are tracked.

 Each call to git lfs track creates a new entry in the .gitattributes file.

file_1.csv filter=lfs diff=lfs merge=lfs -text

file_2.csv filter=lfs diff=lfs merge=lfs –text

file_3.csv filter=lfs diff=lfs merge=lfs -text

*.fasta filter=lfs diff=lfs merge=lfs -text

*.img filter=lfs diff=lfs merge=lfs –text

large_file_?.txt filter=lfs diff=lfs merge=lfs –text

subdir/*.jpg filter=lfs diff=lfs merge=lfs –text

Content of .gitattributes

It is also possible to edit directly the
.gitattributes file instead of using
the git lfs track command.

Track the file named exactly “file_1.csv”

Track the files named exactly “file_2.csv” and “file_3.csv”

Track all files ending in “.fasta”

Track all files ending in “.img”

Track all files whose name are of the form “large_file_” +
any single character + “.txt”

Track all files ending in “.jpg” in sub-directory “subdir”

git lfs track “*.img”

Do not forget “quotes” when using the git lfs track command with a file pattern,
otherwise the pattern expands when the command is run and the matching files in your
current working directory (rather than the pattern) are added to .gitattributes.

git lfs track *.img

*.img filter=lfs diff=lfs merge=lfs -text

content of .gitattributes assuming that
“file1.img” and “file2.img” are present in the

working directory.

file_1.img filter=lfs diff=lfs merge=lfs -text

file_2.img filter=lfs diff=lfs merge=lfs -text

if we add a new file “file_3.img” at a later
point in time…

File “file_3.img” is tracked because it
matches the *.img pattern.

File “file_3.img” is not tracked because it
matches neither file_1.img nor file_2.img.

Using /** is important.
Using / or /* will not work.

 Recursively tracking an entire directory

git lfs track ”directory_path/**”

dir_to_track/** filter=lfs diff=lfs merge=lfs -text

Content of .gitattributes

Su
p

p
le

m
e

n
ta

ry
m

at
e

ri
al

…
Git LFS file tracking: fine-grained control

 For fine-grained control,
can be run in sub-directories. This places .gitattributes
files in sub-directories (similar to how .gitignore files

behave).

 The scope of each .gitattributes file is its current
directory and sub-directories.

 Running git lfs track <file name or pattern>
inside a sub-directory, creates the .gitattributes file
inside that sub-directory

image_files

data

test-project

scan-1.img

.gitattributes

seq_A.fasta

seq_B.fasta

references

ref_seqences.fasta

.gitattributes

scan-2.img

logo.img *.fasta filter=lfs ..

*.img filter=lfs ..

test_file.fasta

File tracked by Git LFS

The .gitattributes file(s) in your repo
should be tracked - just like .gitignore file(s).

Don’t forget to commit them.

git lfs track <file name/pattern>

Su
p

p
le

m
e

n
ta

ry
m

at
e

ri
al

…
Negative pattern matching

 Unlike .gitignore files, .gitattributes files do not support the !pattern for
negative matching (to tell Git LFS to not track a file).

 It is best to write .gitattributes files so that no negative matching is needed.

 If unavoidable, a workaround is possible by adding a line with the file/pattern that should
not be tracked followed by !filter !diff !merge after the general pattern to track.

*.jpg filter=lfs diff=lfs merge=lfs –text

small_logo.jpg !filter !diff !merge

Example of .gitattributes file for tracking all “.jpg” files except “small_logo.jpg”

File that should not be tracked

Git LFS: untracking files

 Removing files from Git LFS:

git lfs untrack <file name or pattern>

 Calls to git lfs untrack remove entries from the .gitattributes file.

 The same result can be obtained by manually deleting lines from the .gitattributes file.

Git LFS: adding and committing files

 Nothing special to do!

 Once files are tracked by LFS, adding them to git and committing them is done as usual.

git add ...

git commit ...

git push ...

Git LFS: updating files

 Nothing special to do!

 Files tracked by Git LFS can be updated, staged and committed like any file under Git control.

$ git add sequence_db.fasta

$ git commit –m “updated sequence database file”

$ git push

The new version of the file is added to the
local Git LFS cache. The pointer file is updated.

The new version of the file is pushed to
the remote LFS object store.

 After commits are pushed, the remote Git LFS object store contains a copy of each version
of all LFS-tracked files.

The idea behind Git LFS is to avoid replicating large data files across local copies of a Git repository.
This has implications for data-backup:

 For LFS-tracked files, local repos cannot be relied-upon to contain a full copy of all data.
 Therefore the remote repository has to be backed-up.

Data backup

In addition, keep in mind that, depending on the data you are working with, there might be legal aspects to consider
(e.g. data might have to be stored encrypted, or be stored within the country)

git diff HEAD~1 sequences_A.fasta

diff --git a/sequences_A.fasta b/sequences_A.fasta

index a33c8a7..01f8d67 100644

--- a/sequences_A.fasta

+++ b/sequences_A.fasta

@@ -1,3 +1,3 @@

version https://git-lfs.github.com/spec/v1

-oid sha256:c1d5ab0faf552cdb3a365347093abc42a4e65718348e17eaad1584d650ae7aa6

-size 6010948

+oid sha256:fc51c1860c4341e175dcfc24fc2c653f75c5e8b3bae6cf80d3632788ccaf4379

+size 6011029

 For LFS-tracked files, git diff will only show the difference between pointer files,
not between actual file content (even for text files).

Using Git LFS: diff-ing files

checksum (SHA-256) of file content.
size of file in bytes

Listing files tracked by Git LFS

git lfs ls-files git lfs ls-files

b04f62c7a1 * large_file_1.txt

efdc76ef2a * sequences_B23.fasta

e6aa57987e * subdir/logo_image.img

 List LFS-tracked files of HEAD commit (i.e. currently checked-out files).

Example:

git lfs ls-files --all

git lfs ls-files --all

b04f62c7a1 * large_file_1.txt

efdc76ef2a * sequences_B23.fasta

e6aa57987e * subdir/logo_image.img

e82048e6d3 - sequence_C34.fasta

fc51c1860c - sequences_A12.fasta

c1d5ab0faf - sequences_A12.fasta

 List all LFS-tracked files in the entire repo history. Example:

git lfs ls-files <ref>
git lfs ls-files HEAD~1

b04f62c7a1 * large_file_1.txt

fc51c1860c - sequences_A12.fasta

efdc76ef2a * sequences_B23.fasta

e6aa57987e * subdir/logo_image.img

git lfs ls-files origin/dev

b04f62c7a1 * large_file_1.txt

e82048e6d3 - sequence_C34.fasta

e6aa57987e * subdir/logo_image.img

 List files associated with any reference (commit).
Example:

* = file is present in worktree

- = file is absent in worktree

Clearing the local Git LFS cache

 Deleting files from the Git LFS local cache [.git/lfs/objects] can be done using:

git lfs prune

git lfs prune --verify-remote  Verify that files are present on the remote before
deleting them.

Files that are deleted by the prune command are those that:

 Are not currently checked-out.

 Are not part of the latest commit of a “recent” branch or tag (“recent” defaults to 10 days and can be customized via

lfs.fetchrecentcommitsdays and lfs.pruneoffsetdays).

 Are not part of a commit that was never pushed to the remote (since in this case there is not yet a copy of the file in

the remote object store, and hence deleting it would amount to permanently losing the file).

git lfs prune --dry-run
 Lists the number of files that would be deleted,

without actually deleting them.

 lfs prune command options:

$ git lfs prune --dry-run

prune: 6 local object(s), 4 retained, done.

prune: 2 file(s) would be pruned (12 MB), done.

Pulling LFS content from a remote

 Nothing special to do!

 Just use the regular Git commands and Git LFS will download content as needed.

git clone ...

git fetch ...

git pull ...

git switch ...

 By default, only the LFS-tracked files needed for the currently
checked-out branch are downloaded.

d
ev

-b

d
ev

-a

m
as

te
r

Example: if we git clone a new repository, only the LFS-tracked files
needed for the latest commit of the “master” branch are downloaded.

HEAD

Su
p

p
le

m
e

n
ta

ry
m

at
e

ri
al

…

It can be useful to download LFS-tracked files to the local LFS cache, e.g. when anticipating off-line time.

git lfs fetch --recent  Downloads the LFS-tracked files of the last commit of all branches
or tags that are considered “recent”.

 By default, “recent” is defined as no more than 7 days old.
 The definition of “recent” can be customized via the

git config lfs.fetchrecentcommitsdays <days>

configuration option (where <days> = number of days).

d
ev

-b

d
ev

-a

m
as

te
r

$ git lfs fetch --recent

fetch: Fetching reference refs/heads/master

fetch: Fetching recent branches within 7 days

fetch: Fetching reference origin/dev-a

fetch: Fetching reference origin/dev-b

d
ev

-b

d
ev

-a

m
as

te
r

HEAD HEAD

git lfs fetch --all  Downloads all LFS-tracked files for all commits.

Pulling additional LFS content from a remote (files from older commits or files from other branches)

 On Git hosting platforms like GitHub or GitLab, LFS-tracked files are listed just like regular files:

 When selecting an LFS-tracked file, the content is not shown and instead a “Stored with Git LFS”
mention is listed:

exercise 6 A

Su
p

p
le

m
e

n
ta

ry
m

at
e

ri
al

…
Tracking files already in Git

When a set of files are already part of a Git repository’s history, there are two options to
start tracking them with Git LFS:

1. Add the files (or file patterns) as tracked files with git lfs track. In this case
however, the versions of the files associated with already made commits will remain in
the Git database.

2. Remove the files’ entire history from the Git repo, and have them tracked by Git LFS
instead (over all of their history). This can be done using git lfs migrate command.

Su
p

p
le

m
e

n
ta

ry
m

at
e

ri
al

…
Option 1

Keep files to track history in the Git
repo up to the current commit.

d
ev

m
as

te
r

A’

B’

C’

sequence_A.fasta

sequence_B.fasta

sequence_A.fasta (updated)

D’ E’

F’

d
ev

m
as

te
r

A

B

C

sequence_A.fasta

sequence_B.fasta

sequence_A.fasta (updated)

D E

F

git lfs track “*.fasta”

git add *.gitattributes

git add *.fasta

git commit

... now do the same for branch dev

Option 2

Remove files from entire Git repo
history and rewrite history with
files stored in LFS.

git lfs migrate import \

--include="*.fasta” \

--everything

git lfs checkout

d
ev

m
as

te
r

A

B

C

sequence_A.fasta

sequence_B.fasta (stored in the Git repo)

sequence_A.fasta (updated)

D E

F

H

G

sequence_B.fasta (stored in LFS object store)

+ The repo’s history remains the same.
- Git repo size possibly still too large to push to GitHub/GitLab
- Mix of files being stored in Git repo and LFS object store = not a clean solution.

+ Large files have now their entire history saved in Git LFS.
+ Size of Git database [.git/objects] truly reduced.
- History completely changed: everyone has to reset their copy of the Git repo.

Su
p

p
le

m
e

n
ta

ry
m

at
e

ri
al

…
The git lfs migrate command

git lfs migrate import --include=<file name or pattern> --everything

git lfs migrate import --include="*.fasta,*.img" --everything

git lfs ls-files

702c4c3a56 - logo.img

6f0a4add2f - sequences_A.fasta

git lfs checkout

git lfs ls-files

702c4c3a56 * logo.img

6f0a4add2f * sequences_A.fasta

After the migrate import command completes, LFS-tracked files in the
working directory are replaced with their pointer (indicated by the “ – “).

The content of the files can be restored
with git lfs checkout .

Example:

• List of files or file patterns to “import” into Git LFS.
• Entries in .gitattributes will be automatically created.
• Multiple patterns/files can be specified by separating them

with a comma, e.g.: --include="*.fasta,*.img"

This options tells git LFS to
process all (local) branches of
the repository.

Su
p

p
le

m
e

n
ta

ry
m

at
e

ri
al

…
The git lfs migrate command

The git lfs migrate import command rewrites the entire history of your repository!

 Updating a remote repo with the changes requires a git push --force.

 Coordinate this operation with other people working on the repo.

History overwrite warning !

A couple of warnings…

 Never run git lfs migrate import with a non-clean working directory. All your
uncommitted changes will be lost (true story)!

 To be on the safe side, it’s best to make a full copy/backup of your Git repository
before running the migrate command. In this way, should anything go wrong, you can
restore your repository from your copy.

Data loss warning !

Su
p

p
le

m
e

n
ta

ry
m

at
e

ri
al

…

 Git LFS stores the tracked files in the LFS cache [.git/lfs/objects] rather than in the Git
repo [.git/objects].

 A lightweight “pointer” file is saved in the git repository.

.git/objects/d4/c3cf36a1c6865ba5e4d6e82e937dc835006231

git cat-file –p d4c3cf36

version https://git-lfs.github.com/spec/v1

oid sha256:e6aa57987e7b8340dbf0ed1f4e5f90cf58a1a98de2d7a860aeed178ea4e734b4

size 21852324

Example of “pointer” blob objects stored in the Git repo [.git/objects]

The actual files are stored in the Git LFS cache [.git/lfs/objects]
.git/lfs/objects/e6/aa/e6aa57987e7b8340dbf0ed1f4e5f90cf58a1a98de2d7a860aeed178ea4e734b4

.git/objects/a3/3c8a78275c0763d964b3a2b0facdf5909b58c3

version https://git-lfs.github.com/spec/v1

oid sha256:c1d5ab0faf552cdb3a365347093abc42a4e65718348e17eaad1584d650ae7aa6

size 6010948

git cat-file –p a33c8a78

.git/lfs/objects/c1/d5/c1d5ab0faf552cdb3a365347093abc42a4e65718348e17eaad1584d650ae7aa6

126 bytes

125 bytes

6 MB

21.8 MB

Behind the scenes…

exercise 6 B

Thank you for attending this course

