E

Version control with Git — optional modules Swiss Institute of

Bioinformatics
(Git LFS, Git submodules) L
WWwWWw.sib.swiss

Robin Engler
Vassilios loannidis

Lausanne, 12-14.10.2022

git submodules

The "symlink" of Git repositories

What are submodules ?

a@a
Super-project [T %

= Git submodules allow keeping a Git repository as a subdirectory

git resources_ webpage git
of another Git repository while version controlling the version
(latest commit) of the nested repository. e
— i glitter-cursor Submodule
. . — .git
= The “super-project” and the submodule remain | g‘fitter ie
independent repos, and have independent remotes. | README.md
— git logo.png
—— README . md
Main repository / super-project (repo containing the submodule) — references.html
3 sibgit/ git_resources webpage Pubic ‘ o V
GitHub GitLab v
@ sibgit Add submodule glitter-cursor 3be740e 38 seconds ago YT) 4 commits SprrOject (prOjeCt used as submodule in the Super'prOjeCt)
glitter-cursor @ 2f0f08e Add submodule glitter-cursor 38 seconds ago g S|bg|t /‘ gl |tte r-cursor Public .O v
[y .gitmodules Add submodule glitter-cursor 38 seconds ago GItHUb G l t La b
O README.md Add README.md 12 hours ago @ sibgit Add glitter effect javascript code 2f0£f08e | 2fefese 2minutes ago &) 3 commits
D git logopng Add Git logo 12 hours ago Y README.md Update README.md 14 months ago
B references hmi Initial commit 12 hours ago O glitter]s Add glitter effect javascript code 2 minutes ago
README.md V-4 README.md V.
Git resources web page ¢ glitter-cursor
A simple web page referencing a list of useful Git resources. Leave a trace of magic glitter behind your mouse cursor.

What are submodules (continued)

a@a
Local repo: PN %

= Because the submodule is fixed at a specific
commit (unless explicitly changed), the
maintainer of the super-project has full control

& sibgit Add submodule glitter-cursor

glitter-cursor @ 2f0f08e
of which revision of the submodule’s code _
. Y .gitmodules
they are using.
[y README.md
On GitHub/GitLab, submodules are shown with the syntax: Y git_logo.png
<submodule dir name>@<commit hash>
(Y references.html

= Git submodules are a reference to another git resources webpage | Bit
repository at a specific commit. The super- I
project does not keep track of individual | glitter-cursor
files inside the submodule. JERHE _
glitter.js Files tracked by the subproject
README . md (here used as a submodule)
— git logo.png
|— README .md Files tracked by the super-project
Ll _ references.html (main project)

Add submodule glitter-cursor
Add submodule glitter-cursor
Add README.md

Add Git logo

Initial commit

Use cases: when to use submodules

= Toinclude external code, i.e. code maintained by someone else (e.g. on GitHub/GitLab), into your
project. With Git submodules you can easily integrate it, get updates from the upstream, and stay in
control of when the external code should be updated. Can also be used to re-use one of your own
repos in multiple projects.

= To make public only a part of a project. You can put the part of your code/files that you want to make
public in a submodule (with public access), and keep the rest of the code in a private repository.

= Large project that uses multiple subprojects maintained independently.

=) Alice uses a library maintained P\ Alice wants to mix public Large pipeline with multiple
A by Bob as a submodule A and private files in a project. collaborators.
Alice’s_cool utility Private files Big pipeline
— .git @ — .git __ — .git
L iBob’s library (1) i Public files [1T\ L Tool A “Qﬂ
- - - L7
— .git | — .git — .git L1
— {John’s_library | — public.doc —— Tool A e
- L— .git \\ —— public.code — | Tool B
—— SIrc.cC Submodul ——iprivate.py — .git (TN
—— header.h c:an:: wies ——ialso private.md —— Tool B g
—— mailn. —— Tool C g
by nested! -
L README .md — .git (T
—— setup.py —— Tool B

When NOT to use submodules

= Don’t use submodules when not really needed, monolithic repositories are simpler
to maintain.

= |f you have a sub-project that you want to use in multiple projects, it might be more
efficient to create a package instead. Most programming languages have a dedicated
package managers/repositories (CRAN for R, npm for javascript, PyPI for Python, etc).

= |f you simply want to have a nested Git repos on your local machine (but with no link
between them), you can simply add the nested repo to the .gitignore file of the
higher-level repo.

git resources_webpage

— .git
glitter-cursor
— .git

—— glitter.js
—— README .md
— git logo.png
—— README . md

—— .gitignore , glitter-cursor/
I tes t outputs. tmp

If all you want is keeping a Git repo inside another one on
your local computer with no link between them... you don’t
need submodules — save yourself the hassle!

[+4
= |f you add multiple submodules, you will

Addlng/reg|5ter|ng d SU medUIe e have multiple entries in .gitmodules.
= _gitmodules should be version
To add/register a new submodule inside a Git repo: controlled, so that other people who clone

the project know where the submodule
projects are from (Git stages this file by
default when adding a new submodule).

git submodule add <URL of submodule repository>

Submodule with custom name:

This will: = Set custom name when adding submodule:
e git submodule add <URL> <name>

* Add a new directory named after the submodule’s repo name. " _
= Rename an exiting submodule:

. . git mv <submodule name>
* Download the content of the submodule corresponding to the latest commit <submodule new name>

(on the default branch) into that directory.

* Createa .gitmodules file at the root of the super-project. _
.gitmodules

[submodule “my-submodule"]

path = my-submodule <= Local path of submodule
url = https://github.com/some-user/my-submodule.git <= URL of submodule

* Initialize the submodule inthe .git/config file.
.git/config
[submodule “my-submodule™]

url = https://github.com/some-user/my-submodule.git
active = true

“active = true” --> module is initialized

https://github.com/some-user/my-submodule.git
https://github.com/sibgit/glitter-cursor.git

Adding a submodule: example

Repo is currently at

Subproject
H o H 14 o .+ n” °
Adding “glitter-cursor” as a submodule to “git_resources_webpage (used as submodule in the super-project) commit [2£0£08e
[sibgit/ glitter-cursor pubiic O
GitHub
Main repository / super-project o
(repo to Wthh a submodule iS added) @ sibgit Add glitter effect javascript code (fef@ie 2pminutes ago %) 3 commits
g Slbglt/ git_resources_webpage Public .o [README.md Update README.md 14 months ago
GItHUb O dlitterjs Add glitter effect javascript code 2 minutes ago
@ sibgit Add Git logo
. README.md V4
[README.md Add README.md .
¢ glitter-cursor
3 git_logo.png Add Git logo
0 ‘ himl Initial i Leave a trace of magic glitter behind your mouse cursor.
references.htm nitial commi
README.md

¢ Git resources web page
git submodule add https://.../glitter-cursor.git

A simple web page referencing a list of useful Git resources.
git commit -m "Add submodule glitter-cursor"

@ sibgit Add submodule glitter-cursor .
: it push
e m——_ git p
(glitter-cursor @ 2f0f08e) Add submodule glitter-cursor

~---——-—-_—"

[.gitmodules

Add submodule glitter-cursor

[README.md
[qit_logo.png Add Git logo
references.html Initial commit

Icon and syntax indicating a submodule, which is pointing at | 2£0£08e

README.md When a new submodule is added, it points at the latest commit of the submodule’s online repository.

https://.../glitter-cursor.git

P
How Git keeps track of the submodule’s version: some more details.

e
S
Q
e
©
(S
>
S
(1)
i
o
()
S
K
Q.
Q.
-
(Vs

Adding “glitter-cursor” as a submodule to “git_resources_webpage”

$ cd git_resources_ webpage

$ git submodule add https://github.com/sibgit/glitter-cursor.git

Cloning into '/home/.../git resources webpage/glitter-cursor'...
remote: Enumerating objects: 9, done.

remote: Counting objects: 100% (9/9), done.

remote: Compressing objects: 100% (6/6), done.

remote: Total 9 (delta 0), reused 3 (delta 0), pack-reused 0
Receiving objects: 100% (9/9), done.

Git submodule add does the following:

* Create a new directory named “glitter-cursor”.

to the latest commit (on the default branch).

* Createa .gitmodules file.

How does Git keep track of the submodule’s version ?

$ git status
Changes to be committed:
(use "git restore --staged <file>..
new file: .gitmodules
new file: glitter-cursor

." to unstage)

$ git diff --cached

diff --git a/.gitmodules b/.gitmodules
-—— /dev/null

+++ b/.gitmodules

@@ -0,0 +1,3 Q@

+[submodule "glitter-cursor"]

+ path = glitter-cursor

+ url = https://github.com/sibgit/glitter-cursor.git
diff --git a/glitter-cursor b/glitter-cursor

-—- /dev/null

+++ b/glitter-cursor

@e -0,0 +1 @@ 2f0£08e /

+Subproject commit 2£f0£08e991d828dd27c£399c0b88edaaad8a2bf9

[submodule "glitter-cursor"]
path = glitter-cursor
url = https://github.com/sibgit/glitter-cursor.git «Gmm

o Local path of submodule

* Initialize the submodule inthe .git/config file.

[remote "origin"]
url = https://github.com/sibgit/git resources webpage.git
fetch = +refs/heads/*:refs/remotes/origin/*
[branch "main"]
remote = origin
~=Derge s_refs/heads/main_ o e ———— L
:[submodule "glitter-cursor"]
: url = https://github.com/sibgit/glitter-cursor.git
| active = true

r

“active = true” --> module is initialized

The submodule is tracked/added as a “virtual file” to the index.

This “virtual file” contains the commit ID (SHA-1 checksum) to which
the submodule is pointing (and nothing else).

Individual files in the submodule are not tracked by the super-project.

* Download the content of “glitter-cursor” corresponding

LRLofsubmodum

Section that
was added

https://github.com/sibgit/git_resources_webpage.git
https://github.com/sibgit/glitter-cursor.git
https://github.com/sibgit/glitter-cursor.git

[+d
Clone a repository with submodules = After cloning a repository that contains submodules, there

will only be an empty directory for the submodules: their
content is not automatically downloaded!

git clone <repository>

git submodule init * You have to initialize* the local configuration files with:
git submodule update git submodule init
or = Now the content of submodule(s) can be retrieved** with:
git submodule update
g:?.t clone <repository> o _ *» --recursive / --recurse-submodules means that the
git submodule update --init --recursive command also applies to nested submodules (submodules
within submodules).
or

e e T This is what you will want
Shortcut to clone, initialize and update :) you witt
1 to use in most situations.

git clone --recurse-submodules <repository> all submodules. |

Notes:
* By default, the commands git submodule init/update apply to all submodules of a project. To apply them only to a specific

submodule, the name of the submodules can be passed: e.g. git submodule init <submodule name>

What does *initialize a submodule mean, and what exactly does git submodule init do?

When Git initializes a submodule, it creates an entry for it in the .git/config file of the .git/config

superproject repo and marks it as “active = true”. [submodule "glitter-cursor"]

When working on a large project with many submodules, this makes it e.g. possible to eelve = Erve . _ .
L. url = https://github.com/sibgit/glitter-cursor.git

only initialize those submodules that are really needed for your work.

The meaning of **update in git submodule update is to fetch updates in submodules and update the working tree of the submodules
to the revision expected by the superproject. It does not mean to update the submodules to their latest version.

Clone a repository with submodules: example

Cloning “git_resources_webpage” that contains the submodule “glitter-cursor”.

O

GitHub GitLab

Online main repository / super-project
(repo that contains a submodule)

git clone
https://.../git resources webpage.git

agv
Local copy of repository E ®

[sibgit/ git_resources webpage Pubiic ‘

& sibgit Add submodule glitter-cursor

/ submodule, pointing at | 2f0£f08e
~s

™ .gitmodules
[README.md
Y git_logo.png

[y references.html

7 Add submodule glitter-cursor
Add submodule glitter-cursor
Add README.md
Add Git logo

Initial commit

git_resources_webpage

— git logo.png
— README .md
—— references.html

git

—— glitter-cursor <= Directoryis empty!

git submodule init
Initializes/activates the

git submodule update

submodule(s) in .git/config
—init --recursive

README.md

git submodule update
Downloads submodule content

Git resources web page git resources_webpage

A simple web page referencing a list of useful Git resources.

— glitter-cursor
—— glitter.js <== Now the files of the

L — README. submodule are
git clone --recurse-submodules md

https://.../git resources webpage.git glt_logo -pPng locally available.
| ——————) —— README .md

L references.html

Shortcut ! i

https://.../git_resources_webpage.git
https://.../git_resources_webpage.git

Cloned submodules are (by default) in detached HEAD state

i f
= After cloning a repo with submodules, the [%
submodules are in detached HEAD state. git resources webpage git
= To make it point to a branch you have to [_git
explicitly checkout (switch to) that branch. — glitter-cursor
— .git
—— glitter.js
$ cd glitter-cursor L README.md
$ git status — git logo.png
HEAD detached at 2f0£08e <= Commit the submodule [README .md
$ git switch main is currently pointing at. L ceferences kol

To display the revision of the submodule to which a super-project is currently pointing:

$ git submodule status
2f0f08e991d828dd27¢cf399¢c0b88 glitter-cursor (heads/main)

e
S
Q
e
©
(S
>
S
(1)
i
o
()
S
K
Q.
Q.
-
(Vs

Update a repository with submodules (git pull on the super-project)

Similarlyto git clone, running git pull in the super-project (the main project that hosts the submodule)
does not automatically update the submodules’ content. You need to either:

git pull

git submodule update --init --recursive

or
J—— e i This is what you will want
i git pull --recurse-submodules ‘ Shortcut ! 1 to use in most situations.
i]
git pull --recurse-submodules
Commit ID of super-project
14
ef91d34 b23ad08 git submodule update
git resources_webpage I git pull git resources_webpage ["init ~-recursive
" g:f't 2f0£f08e | <€ Commit ID of . g:_"t 10b7d7
——iglitter-cursor submodule ——iglitter-cursor
E— git the super- m— git
. . project is . .
glitter.js 2£0£08e | pointingat. glitter.js T
—— README .md] —— README .md |)
— git logo.png Commit ID of — git logo.png isnu:;:cc"‘j;ﬁft'f: not
I bmodule actual I
README . md zgn:‘;‘r’“” € actua README . md revision the super-
—— references.html — references.html | project is pointing at.

<4=—= Downloads the submodule’s
updated content

é Important: these
are commands to

run in the super
project!

Files of the
submodule are
now updated.

b23ado8

git resources_webpage

Gre £10b7d7

——iglitter-cursor
— .git

—— glitter.js £10b7d7

L README.md
— git logo.png

— README .md

L— references.html

Working with submodules

= Submodules are regular Git repos. Once inside, you can run
the same Git commands as you would on any repo.

= The super-project does not keep track of individual files in
the submodule: it only keeps track of the commit to which
it points.

However, the super-project will detect when changes are
made inside a submodule (but not exactly which changes).

Example:

$ cd glitter-cursor

We are now in the submodule directory.
git status

git add ...

git commit ...

git push

O O O O =

Example: files were added/modified in the submodule.

$ git status # run in the super-project’s root!

Changes not staged for commit: t:;>
modified: glitter-cursor (modified content,
untracked content)

Example: one or more new commits in submodule.

$ git status # run in the super-project’s root!

Changes not staged for commit:
modified: glitter-cursor (new commits)

N

= To run the same tasks on multiple submodules, there is the
handy command:

git submodule foreach “git command” ‘

Example:

$ git submodule foreach "git status"

$ git submodule foreach "git log --oneline"
Entering 'glitter-cursor'

2f0f08e (HEAD -> main) Add glitter effect code
841e83a Update README.md

b0b66£f8 Initial commit

Making changes to a submodule (modifying the content of the submodule)

Let’s assume we want to modify the content of a submodule, for instance:

* | Update the submodule’s content to a newer version.

* | Make changes to files in the submodule.

* | Point the submodule at an older version.

We proceed as follows: Commands run in the submodule:
. . $ cd glitter-cursor
1. Make the desired changes in the submodule. J
If needed, pull/push the changes from/to the $ git pull $ git add ... $ git checkout ...
submodule’s remote. $ git commit ...
$ git push

Commands run in the super-project:

2. The commit ID (hash) of the submodule has now changed, ¢ jit status

so we must update the super-project by making a new On branch main
. oy - . . . Changes not staged for commit:
commit that will indicate the update in commit ID of the T L I

submodule.
$ git diff
diff --git a/glitter-cursor b/glitter-cursor
-—- a/glitter-cursor
. . +++ b/glitter-cursor
New commit to which the ~Subproject commit 2£0£08e991d828dd27c£399c0b88edaaad8a2bEd
submodule is now pointing =P +subproject commit £10d7b772342c6a9£31390af4£8al6£71c440777

. o . $ git add glitter-cursor # go back to the super-project.
Makmga new commit m.the > S git commit -m "Update submodule glitter-cursor"“
super-project S git push

Making changes to a submodule Subproject

. . (used as submodule in the super-project)
How things look on the online pages of the remotes

A sibgit/ glitter-cursor Puiic
GitHub

@ sibgit Add glitter effect javascript code 2 fo fo 8e 2fefese 2 minutes age %) 3 commits
gi t_re source S_Webpage [README.md Update README.md 14 months ago
glitter.js Add glitter effect javascript code 2 minutes ago
— .git .
9 git push
——iglitter-cursor
_ gi t é sibgit Improve glitter effect f1 0d7b7 f1ed7b7 4 minutes ago &) 4 commits
—— glitter.js [READMEmd Update README.md 14 months ago
E— README . md 4 dlitterjs Add glitter effect javascript code 8 hours ago
— g l t_l O go . pl’l g [glitter_improved.js Improve glitter effect 4 minutes ago
(— README .md
. references.html AEADME md 4
glitter-cursor

Leave a trace of magic glitter behind your mouse cursor.

Main repository / super-project (repo containing the submodule)

[sibgit/ git resources webpage Pubic O

GitHub
@ sibgit Add submodule glitter—cy 2f0f08e gl t p‘L'ISh @ sibgit Update submodule gii‘té!r—y £10d7b7
glitter-cursor @ 2f0f08e Add submodule glitter-cursor m glitter-cursor @ f10d7b7 Update submodule glitter-cursor
™ .gitmodules Add submodule glitter-cursor [y .gitmodules Add submodule glitter-cursor
[README.md Add README.md [README.md Add README.md
™ git_logo.png Add Git logo 3 git_logo.png Add Git logo
[references.html Initial commit [references.html Initial commit

--recurse-submodules option: automated submodules push

To avoid accidentally forgetting to push changes in a submodule when pushing in the super-project:

git push --recurse-submodules=check \: safeguard that will make your push fail is there are
any “non-pushed” changes in submodules.

git push --recurse-submodules=on-demand \: automatically push all submodules when
pushing the super-project.

These options can also be permanently set in the Git configuration of the super-project:
$ git config push.recurseSubmodules check
or

Note: we are not using the --global option, so
$ git config push.recurseSubmodules on-demand this setting only affects the current repo.

Important: all these commands are run in the context (directory) of the super-project, not of the submodule!

Examples:
$ git push --recurse-submodules=check $ git push --recurse-submodules=on-demand
The following submodule paths contain changes that Pushing submodule 'submodule-name'
cannot be found on any remote: ce
submodule-name Pushing super-project (main project)

Please try
git push --recurse-submodules=on-demand

©
=
Q
=)
©
(S
>
S
(1)
i)
o
()
S
9
Q.
Q.
-
(Vo]

PU"lng updates fOr C SmeOdUIe git submodule update --remote <submodule name>
Updating a submodule to its latest commit 1

If no submodule is specified, all

1. Bob, the maintainer of the “glitter-cursor” repo, pushes a new update. submodules are updated

2. Alice updates her submodule in the “git_resources_webpage” project

with Bob’s new update. m

2f0£08e £10d7b7

AR
Si=
fl 0d7b7 & sibgit Improve glitter effect f1ed7b7 4 minutes ago %) 4 commits

. - [README.md Update README.md 14 months ago
glitter-cursor git * git push
O dlitterjs Add glitter effect javascript code 8 hours ago
. t [glitter_improved.js Improve glitter effect 4 minutes ago
— .gi
—— glitter.js README.md 7
—— README .md

glitter-cursor

Leave a trace of magic glitter behind your mouse cursor. O v

$ git submodule update --remote GitHub GitLab
Submodule path 'glitter-cursor': checked out £10d7b77...

git resources_webpage git

etk 2£0£08e
——iglitter-cursor
— .git m To complete the update, Alice updates the super-project with a new
| ' : commit that will make it point to the submodule commit:
gézgf/gr . (jjs 2£0£08e | | £10d7b7 P £10d7b7
_t 0 L ' $ git status
—— git_l10g0.png modified: glitter-cursor (new commits)

— references.html $ git add glitter-cursor
$ git commit -m “Update submodule to latest version"

Pulling updates for a submodule (command details)

Updating a submodule to its latest commit

To pull the latest changes for a submodule:

git submodule update --remote <submodule name>

* If no submodule is specified, all submodules are updated.

* If the local submodule has diverged from its remote (e.g. you made some commits),
--merge/--rebase must be added to the command to either merge or rebase.

S git submodule update --remote --merge ‘

.gitmodules
* By default Git will try to pull the changes from the master branch. To [submodule "glitter-cursor"]
H TR - path = glitter-cursor
pull frqm another branch, you have to specify itin .gitmodules STy
by setting the parameter branch. branch = main

* After the content of the submodule is updated, the update in its

version (commit hash) must still be committed. s git status
modified: my-submodule (new commits)
$ git add my-submodule
$ git commit -m “Update submodule to latest version"

Alternatively, the pull in the submodule can also be done manually:

$ cd my-submodule
$ git switch main # If in DETACHED HEAD state.
$ git pull

©
=
Q
=)
©
(S
>
S
(1)
i)
o
()
S
9
Q.
Q.
=
(Vo]

https://.../glitter-cursor.git

exercise 5

The Git reference web page gets
better with submodules

git LFS

large file storage

Tracking large files can be useful...

Tracking large files together with code is an attractive proposition, e.g. in scientific applications:

= Data analysis/processing pipeline.

= Machine learning applications (training data and code in the same place).

... but Git does not work well with large files

= Git was designed for tracking code —i.e. relatively small text files.
= Adding large files to a Git repo is technically possible, however:

* Since Git is a distributed VCS, each local copy of a repository will contain a full copy of all versions
of all tracked files. Therefore, adding large files will quickly inflate the size of everyone’s repository,
resulting in higher disk space usage (on local hosts).

* Git's internal data compression (i.e. packfiles) is not optimized to work with binary data (e.g. image
or video files). Each change to a binary file will (more or less) add the full size of the file to the repo,
taking disk space and slowing down operations such as repo cloning or update fetching.

* Commercial hosting platforms impose limits on the size of files that can be pushed to hosted Git
repos (GitHub: 100 MB, GitLab: no file limit but 10 GB repo limit).

The solution®: Git LFS

Git LFS (Large File Storage) is an extension for Git,
specifically designed to handle large files.

Basic principle: large files are not stored in the Git
database (the . git directory), instead:

= Only a reference/pointer to large files is
stored in the Git database.

= The actual files are stored in a separate
repository or “object store”.

Open source project: https://git-Ifs.github.com
First released in 2015.

Not all hosting services support Git LFS, and when they do,
storage space is limited (additional space may be purchased).

* Alternatives to Git LFS exist, but Git LFS is the most popular.

Features

Large file versioning

Version large files—even those as large as a couple
GB in size—with Git.

More repository space

Host more in your Git repositories. External file
storage makes it easy to keep your repository at a
manageable size.

Faster cloning and fetching

Download less data. This means faster cloning and
fetching from repositories that deal with large files.

Same Git workflow

Work like you always do on Git—no need for
additional commands, secondary storage systems, or
toolsets.

https://git-lfs.github.com/

GitHub and GitLab disk quotas, file size limit and pricing

= |f your institution is running their own instance of GitLab, you can check with them if they offer LFS support
(and how much space you can have their.

= Here are limits for 2 popular commercial Git hosting providers:

GitHub.com GitLab.com
Max file size 100 MB No size limit
Max repo size 1 GB (recommended) 10 GB
2 GB to 5 GB (max)
LFS max file size 2 GB No size limit (not sure)
LFS object store 1 GB storage for free 60 USD/year per 10GB

1 GB/month free bandwidth (download)

5 USD/month for each additional “pack” of 50
GB storage + 50 GB bandwidth

last updated on Feb 2021

You can also setup a Git LFS object store on third-party storage provider -but you need to set it up yourself
and it is not a trivial task:

* SWITCHengines (220 CHF/TB*year) — no backup (need to organize your own).
* AWS (amazon web services).

e
S
Q
e
©
(S
>
S
(1)
i
o
()
S
K
Q.
Q.
-
(Vs

Git LFS workflow overview

ﬁ@a

Only a reference/pointer to large files is stored in the Git database.

Large files are downloaded only when needed.

I\ Alice’s computer

Remote storage

The large files themselves are stored in a separate repository or “object store”.

Transparent: only 1 extra command is needed for this workflow (git 1fs track).

{
Ny
(TN

)

N,

Bob’s computer

JmJ) b

=
=]
=4
o
=)

master

Working directory
[project.git]

o R o= o
= 8= B o =]
== == =
I=R=] oo o
ER=] R =]

10100

01101

dev-a

PP s
.

git commit ’

- git add

L

- git 1lfs track
<file name>

- git 1fs track
<file pattern>

Gitrepo[.git]
59

Git hosting service

¥) 9

GitLab GitHub Bitbacket

git clone
git fetch

10100
01101

LFS object

]
1
= |
L |
i Pointer to file, ! B B
| » very lightweight i
1 I
1 1
EEE
eyt S [
git push ‘
Actual file i
ﬁi’ig‘il | —
!
]
]
]

Ly L 1
10100 10100 10100
01101 01101 01101

Git LFScache[.git/1£s]

Y Y A
10100(| 10100 | 10100 | 10100
01101 {01101 |or01| fo1101

Generally hosted by the
Git repo hosting service,
but not necessarily.

Because Bob has only checked-
out the master branch, Git LFS

only downloaded one file

Remote storage Local Git repositories

a ’ ’
Git database Alice s chal repo Bob’s local repo |
Alice just started to work on the o Bob contributed to the project
comp|ete Git history content L > 'f project. She cloned the repo and ‘g’ since a while. He’s currently
[\ created the “dev-a” branch. A working on “dev-b”.

of project

) @

dev-b
dev-a

o’ @ v
o ”
o’

LOee

LFS object store

I

master

content

&
\ S
€
3

Large file. Colors represent
different versions or different
files.

Git LFS: initial setup G

= One time setup: to be executed only once per user/machine, after Git LFS was installed.

(this adds LFS Git filters to your global configuration file ~/.gitconfig)

git 1fs install

Git LFS: tracking files

= Adding files to Git LFS:

git 1lfs track <file name or pattern>

= When using a file pattern (glob pattern), all files matching the pattern are tracked.
" Eachcallto git 1fs track createsanewentryinthe .gitattributes file.

= Examples:
$ git lfs track file l.csv <+«—— Track the file named exactly “file_1.csv”
S git 1fs track file 2.csv file 3.csv <+—— Track the files named exactly “file_2.csv” and “file_3.csv”
3 i LR REEE e et <+——— Track all files ending in “.fasta”
v gJ_'t 2 Al "*.:ng . 5 . <+ Track all files ending in “.img”
» gJ.'t Lfs track largc.a_fllc?_. L Ext <+————— Track all files whose name are of the form “large_file_” +
$ git 1fs track "subdir/*.jpg"

any single character + “.txt”
\ Track all files ending in “,jpg” in sub-directory “subdir”
Content of .gitattributes @
file 1l.csv filter=1fs diff=1fs merge=1fs -text

file 2.csv filter=1fs diff=1fs merge=1fs —text ' It is also possible to edit directly the

file 3.csv filter=1fs diff=1fs merge=1fs -text -gitattributes file instead of using

* fasta filter=1fs diff=1fs merge=1fs -text the git 1fs track command.

*.img filter=1fs diff=1fs merge=1lfs —-text @

large file ?.txt filter=1lfs diff=1fs merge=1fs -text
subdir/*.Jjpg filter=1fs diff=1fs merge=1fs -text

otherwise the pattern expands when the command is run and the matching files in your

j Do not forget “quotes” when usingthe git 1fs track command with a file pattern, o
current working directory (rather than the pattern) are added to . gitattributes.

git 1lfs track “*.img” ‘/ git 1lfs track *.img X

content of .gitattributes assuming that

“filel.img” and “file2.img” are present in the
working directory.

*.img filter=1fs diff=1fs merge=1lfs -text file 1.img filter=1fs diff=1fs merge=1lfs -text
file 2.img filter=1fs diff=1fs merge=1fs -text

if we add a new file “file_3.img” at a later
point in time...

File “file_3.img” is tracked because it

% File “file_3.img” is not tracked because it
matches the *.img pattern.

matches neither file_1.img nor file_2.img.

= Recursively tracking an entire directory

git 1fs track ”“directory path/**” <«— Using /** is important.
Using / or /* will not work.

Content of .gitattributes
dir to track/** filter=1fs diff=1fs merge=lfs -text

Git LFS file tracking: fine-grained control

should be tracked - just like .gitignore file(s).

Don’t forget to commit them.

&

@ File tracked by Git LFS

» For ﬁne_grained control, git 1fs track <file name/pattern> ‘ lll test-project
can be run in sub-directories. This places .gitattributes @ data
files in sub-directories (similar to how .gitignore files t@ seq A fasta
behave). @ seq_B.fasta
= The scope of each .gitattributes fileisits current — (@l references
directory and sub-directories. L@ ref _segences.fasta
"= Running git 1fs track <file name or pattern> — [l image_files
inside a sub-directory, creates the .gitattributes file 3 gitattributes
: inside that sub-directory =) scan-1img « ing £ilter—ifs ..
] _t BY
= 3 scan-2.img
=
g —a .gitattributes
E‘ _3 logo.img * fasta filter=1lfs ..
2 The .gitattributes file(s) in your repo () test_file.fasta
()
S
@
Q.
Q.
=
(Vo]

Negative pattern matching

= Unlike .gitignore files, .gitattributes files do not support the 'pattern for
negative matching (to tell Git LFS to not track a file).

= Jtis besttowrite .gitattributes files so that no negative matching is needed.

» |f unavoidable, a workaround is possible by adding a line with the file/pattern that should
not be tracked followed by 'filter 'diff !merge after the general pattern to track.

Example of .gitattributes file for tracking all “jpg” files except “small_logo.jpg”

*.Jjpg filter=1fs diff=1fs merge=1lfs —-text
small logo.jpg !filter !diff !merge File that should not be tracked

e
S
Q
e
©
(S
>
S
(1)
i
o
()
S
K
Q.
Q.
-
(Vs

Git LFS: untracking files

= Removing files from Git LFS:

git 1fs untrack <file name or pattern>

"= Callsto git 1fs untrack remove entries from the .gitattributes file.

" The same result can be obtained by manually deleting lines from the .gitattributes file.

Git LFS: adding and committing files

= Nothing special to do!
= Once files are tracked by LFS, adding them to git and committing them is done as usual.

git add ...
git commit ...

git push ...

Git LFS: updating files

= Nothing special to do!
= Files tracked by Git LFS can be updated, staged and committed like any file under Git control.

$ git add sequence db.fasta <= The new version of the file is added to the
$ git commit -m “updated sequence database file” local Git LFS cache. The pointer file is updated.
$ git push <— The new version of the file is pushed to

the remote LFS object store.

= After commits are pushed, the remote Git LFS object store contains a copy of each version
of all LFS-tracked files.

Data backup

The idea behind Git LFS is to avoid replicating large data files across local copies of a Git repository.
& This has implications for data-backup:

= For LFS-tracked files, local repos cannot be relied-upon to contain a full copy of all data.
= Therefore the remote repository has to be backed-up.

In addition, keep in mind that, depending on the data you are working with, there might be legal aspects to consider
(e.g. data might have to be stored encrypted, or be stored within the country)

Using Git LFS: diff-ing files

= For LFS-tracked files, git diff will only show the difference between pointer files,
not between actual file content (even for text files).

git diff HEAD~1 sequences A.fasta

diff --git a/sequences A.fasta b/sequences A.fasta

index a33c8a’..01£f8de7 100644

—--- a/sequences_A.fasta

+++ b/sequences A.fasta

@@ -1,3 +1,3 @@

version https://git-1fs.github.com/spec/vl

-o0id sha256:cld5ab0faf552cdb3a365347093abc42a4e65718348el7eaadl584d650ae7aab
-size 6010948

+0id sha256:£fc51cl860c4341el75dcfc24£fc2c653£f75c5e8b3bae6cf80d3632788ccafd4379
+size 6011029

/

. - checksum (SHA-256) of file content.
size of file in bytes

Listing files tracked by Git LFS

= List LFS-tracked files of HEAD commit (i.e. currently checked-out files).

git 1lfs 1ls-files

= List files associated with any reference (commit).

git 1lfs ls-files <ref>

Example:

Example:

* = file is present in worktree

- = file is absent in worktree —

= List all LFS-tracked files in the entire repo history.
git 1fs 1s-files --all

git 1lfs ls-files

b04fo62c7al * large file 1.txt
efdc76ef2a * sequences B23.fasta
e6aab57987e * subdir/logo image.img

git 1lfs ls-files HEAD~1

b04f62cTal
fc51cl1860c
efdc/6ef2a
e6aab7987e

*

*

*

large file 1.txt
sequences Al2.fasta
sequences B23.fasta
subdir/logo image.img

git 1fs ls-files origin/dev

b04tfoZC

*

large file 1.txt

e82048cbdd - sequence C34.fasta

Example:

e6aab7987e * subdir/logo image.img

git 1fs ls-files --all

b04f62c7al
efdc/6ef2a
e6aab7987e
e82048e6d3
fc51cl1860c
cldS5ab0faf

large file 1.txt
sequences B23.fasta
subdir/logo image.img
sequence C34.fasta
sequences AlZ2.fasta
sequences AlZ2.fasta

Clearing the local Git LFS cache

= Deleting files from the Git LFS local cache [.git/1£s/objects] can be done using:

git 1lfs prune

Files that are deleted by the prune command are those that:

= Are not currently checked-out.

= Are not part of the latest commit of a “recent” branch or tag (“recent” defaults to 10 days and can be customized via
1fs.fetchrecentcommitsdays and 1fs.pruneoffsetdays).

= Are not part of a commit that was never pushed to the remote (since in this case there is not yet a copy of the file in
the remote object store, and hence deleting it would amount to permanently losing the file).

= 1fs prune command options:

git 1fs prune --dry-run = Lists the number of files that would be deleted,
without actually deleting them.

$ git 1lfs prune --dry-run
prune: 6 local object(s), 4 retained, done.
prune: 2 file(s) would be pruned (12 MB), done.

git 1lfs prune --verify-remote = \erify that files are present on the remote before
deleting them.

Pulling LFS content from a remote

= Nothing special to do!

= Just use the regular Git commands and Git LFS will download content as needed.

git clone
git fetch ...
git pull

git switch ...

= By default, only the LFS-tracked files needed for the currently
checked-out branch are downloaded.

Example: if we git clone anew repository, only the LFS-tracked files
needed for the latest commit of the “master” branch are downloaded.

Pulling additional LFS content from a remote (files from older commits or files from other branches) 0

It can be useful to download LFS-tracked files to the local LFS cache, e.g. when anticipating off-line time.

git lfs fetch --recent ‘ * Downloads the LFS-tracked files of the last commit of all branches
or tags that are considered “recent”.

= By default, “recent” is defined as no more than 7 days old.
= The definition of “recent” can be customized via the
git config 1lfs.fetchrecentcommitsdays <days>
configuration option (where <days> = number of days).

git 1lfs fetch --all = Downloads all LFS-tracked files for all commits.

?
>
)
T

S git 1lfs fetch --recent o
fetch: Fetching reference refs/heads/master

fetch: Fetching recent branches within 7 days
fetch: Fetching reference origin/dev-a

fetch: Fetching reference origin/dev-b

e
S
Q
e
©
(S
>
S
(1)
i
o
()
S
K
Q.
Q.
-
(Vs

* On Git hosting platforms like GitHub or GitLab, LFS-tracked files are listed just like regular files:

¥ master ~ ¥ 1branch) 0tags
robinengler first commit

subdir first commit
™ .gitattributes first commit
M README.txt first commit
™ large file 1.txt first commit
™ logo.img first commit
™M seguences A12.fasta first commit
M sequences B23fasta first commit

Gotofile || Addfie~ About &

test repo for git LSF
aB95bad 17 minutes ago ¥%) 1 commit

[0 Readme
17 minutes ago
17 minutes ago Releases
17 minutes ago No releases published

Create a new release
17 minutes ago

17 minutes ago

Packages
17 minutes ago

Mo packages published
17 minutes ago Publish your first package

mention is listed:

= When selecting an LFS-tracked file, the content is not shown and instead a “Stored with Git LFS”

¥ master ~ test_|sf/ sequences_B23.fasta

= robinengler first commit

£a.1 contributor

11.5 MB @ Stored with Git LFS

Gotofile

Latest commit a895bad 15 minutes ago %) History

=

Download u

View raw
(Sorry about that, but we can't show files that are this big right now.)

exercise 6 A

e
S
Q
e
©
(S
>
S
(1)
i
o
()
S
K
Q.
Q.
-
(Vs

Tracking files already in Git

When a set of files are already part of a Git repository’s history, there are two options to
start tracking them with Git LFS:

1. Add the files (or file patterns) as tracked files with git 1£s track. In this case

however, the versions of the files associated with already made commits will remain in
the Git database.

2. Remove the files’ entire history from the Git repo, and have them tracked by Git LFS
instead (over all of their history). This can be done using git 1fs migrate command.

>
(V]
Option 1 © Option 2
Keep files to track history in the Git () = Remove files from entire Git repo
repo up to the current commit. G w sequence_B.fasta history and rewrite history with

git 1fs track “*.fasta” files stored in LFS.

git add *.gitattributes
git add *.fasta
git commit

... now do the same for branch dev ﬁ

sequence_A.fasta (updated)

éﬁ git 1fs migrate import \
E% --include="*. fasta” \
— --everything
git 1lfs checkout

3 sequence_A.fasta

3

; G sequence_B.fasta (stored in LFS object store)

Y

10100
01101

>
()]

o
G G sequence_B.fasta

T
R
tH
\J

0

el sequence_B.fasta (stored in the Git repo) 6

10100
01101
10100
01101

3 sequence_A.fasta

sequence_A.fasta (updated) G sequence_A.fasta (updated)

+ The repo’s history remains the same. + Large files have now their entire history saved in Git LFS.
- Git repo size possibly still too large to push to GitHub/GitLab + Size of Git database [.git/objects] truly reduced.
- Mix of files being stored in Git repo and LFS object store = not a clean solution. - History completely changed: everyone has to reset their copy of the Git repo.

e
S
Q
e
©
(S
>
|
(1)
i
c
()
S
K
Q.
Q.
-
(Vs

The git 1fs migrate command o

git 1fs migrate import --include=<file name or pattern> --everything

7 7
* List of files or file patterns to “import” into Git LFS.

* Entriesin .gitattributes will be automatically created.
* Multiple patterns/files can be specified by separating them
with a comma, e.g.: --include="*.fasta, *.img"

This options tells git LFS to
process all (local) branches of
the repository.

Example:
git 1lfs migrate import --include="*.fasta,*.img" --everything
git 1fs ls-files After the migrate import command completes, LFS-tracked files in the

TUzZedesast = logo. g working directory are replaced with their pointer (indicated by the “ —“).
6f0adadd2f - sequences A.fasta

git 1lfs checkout

git 1lfs 1ls-files

702c4c3ab56 * logo.img
6f0adadd2f * sequences A.fasta

The content of the files can be restored
with git 1fs checkout.

e
S
Q
e
©
(S
>
S
(1)
i
o
()
S
K
Q.
Q.
-
(Vs

e
S
Q
e
©
(S
>
S
(1)
i
o
()
S
K
Q.
Q.
-
(Vs

The git 1fs migrate command

A couple of warnings...

History overwrite warning !

Thegit 1fs migrate import command rewrites the entire history of your repository!

= Updating a remote repo with the changes requiresa git push --force.

= Coordinate this operation with other people working on the repo.

Data loss warning !

= Neverrun git 1fs migrate import with a non-clean working directory. All your
uncommitted changes will be lost (true story)!
-/. j ! |

To be on the safe side, it’s best to make a full copy/backup of your Git repository
before running the migrate command. In this way, should anything go wrong, you can
restore your repository from your copy.

Behind the scenes... 0

" Git LFS stores the tracked files in the LFS cache [.git/1fs/objects] rather than in the Git
repo [.git/objects].

= Alightweight “pointer” file is saved in the git repository.

Example of “pointer” blob objects stored in the Git repo [.git/objects]

.git/objects/d4/c3cf36alc6865ba5e4d6e82e937dc835006231 1Zng£S

git cat-file -p d4c3cf36

.git/objects/a3/3c8a78275c0763d964b3a2b0facdf5909b58c3 12;bt
ytes

version https://git-1lfs.github.com/spec/vl
git cat-file -p a33c8a78 oid sha256:e6aa57987e7b8340dbf0ed1£f4e5£90cf58ala%98de2d7a860aeedl78eade734b4
size 21852324

version https://git-1lfs.github.com/spec/vl
oid sha256:cld5ab0faf552cdb3a365347093abc42a4e65718348el7eaadl584d650ae7aab
size 6010948

The actual files are stored in the Git LFS cache [.git/1fs/objects]
21.8 MB
.git/1lfs/objects/e6/aa/e6aa57987e7b8340dbf0edlf4e5£f90cf58ala98de2d7a860aeedl78eade734b4 -T

.git/1lfs/objects/cl/d5/cld5ab0faf552cdb3a365347093abc42ad4e65718348el7eaadl584d650ae7aab ;MB

©
=
Q
=)
©
(S
>
S
(1)
i)
o
()
S
9
Q.
Q.
=
(Vo]

exercise 6 B

Thank you for attending this course Swiss Institute of

Bioinformatics

