
www.sib.swiss

Robin Engler
Vassilios Ioannidis

Lausanne, 12-14.10.2022

Version control with Git – advanced topics

Original authors
Robin Engler
Roman Mylonas
Vassilios Ioannidis

Creative Commons – ShareAlike



Course outline

 Review / Refresher: quick review of basic commands.

 Rewriting history: interactive rebase, git reset and commit amending.

 Detached HEAD state explained.

 The Git stash: Git’s “cut and paste” functionality.

 Git tags: label important commits.

Optional Git extensions (these can be useful for specific applications).

 Git submodules: "symlink" Git repos.

 Git LFS: large file storage.



Course resources

slides, exercises, exercise solutions (available at end of day), 
command summary (cheat sheet), feedback.

Course home page:

Google doc:

Questions: feel free to interrupt at anytime to ask questions, 
or use the Google doc.

ask questions.



Course slides

Regular slide
[Red]

Reminder slide
[Green]

Supplementary 
material
[Blue]

Slide covered in detail during the course.

Material we assume you know. 
Covered quickly during the course. 

Material available for your interest, to read on your own. 
Not formally covered in the course.
We are of course happy to discuss it with you if you have questions.

 3 categories of slides:



R
e

m
in

d
e

r…

review / refresher
Git commands we assume you know



R
e

m
in

d
e

r…

git switch <branch>

git checkout <branch>

HEAD

git branch <branch>

git init / git clone

git add <file>

git restore --staged <file> / 

git rm --cached <file>

git rm <file>

git commit –m “commit message”

masterdevel

.git

develHEAD

master

.git

devel

master

.git

test

feature

git switch -c <branch>

git checkout -b <branch>



R
e

m
in

d
e

r…

git status

git show

git log
$ git log

commit f6ceaac2cc74bd8c152e11b9c12ada725e06c8b9 (HEAD -> master)

Author: Alice alice@redqueen.org

Date:   Wed Feb 19 14:13:30 2020 +0100

Add stripe color option to class Cheshire_cat.

commit f3d8e2280010525ba29b0df63de8b7c2cd7daeaf

Author: Alice alice@redqueen.org

Date:   Wed Feb 19 14:11:56 2020 +0100

Fix off_with_their_heads() so it now passes tests.

commit cfd30ce6e362bb4536f9d94ef0320f9bf8f81e69

Author: Mad Hatter mad.hatter@wonder.net

Date:   Wed Feb 19 13:31:32 2020 +0100

Add gitignore file to ignore script output.

$ git show 89d201f
commit 89d201fd01ead6a499a146bc6da5aa078c921ecf

Author: Alice <alice@redqueen.org>

Date:   Wed Feb 19 14:00:02 2020 +0100

Fix function so it now passes tests

diff --git a/script.sh b/script.sh

index d7bfdc8..fa99250 100755

--- a/script.sh

+++ b/script.sh

@@ -7,13 +7,28 @@

# Sort peak list by summit elevation, from highest to lowest.

-cat <( head -n1 $INPUT_FILE )

+cat <( head -n1 ${OUTPUT_FILE}.tmp ) \

+rm "${OUTPUT_FILE}.tmp"

+DAHU_COUNT=$(head -n2 $OUTPUT_FILE | tail -n1 | cut -f5)

$ git status

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

modified:   LICENSE.txt

Changes not staged for commit:

(use "git add <file>..." to update what will be committed)

(use "git checkout -- <file>..." to discard changes in working 

directory)

modified:   README.md

Untracked files:

(use "git add <file>..." to include in what will be committed)

untracked_file.txt



R
e

m
in

d
e

r…
git log --all --decorate --oneline --graph

git config --global alias.adog "log --all --decorate 

--oneline --graph"



R
e

m
in

d
e

r…
Branch merging

Fast-forward merge

devel

a

b

c

d

e

f

g

h

a

b

c

d

e

f

g

h master *
devel

 For merge operations, the branch into which one merges must be the currently active branch (* in the figures below). 

 When the branch that is being merged (here devel) is rooted on the latest commit of the branch that it is being 
merged into (here master), the merge is said to be fast-forward.

git merge devel

 Guaranteed to be conflict free.

master *

Non fast-forward merge

* master devel

a

b

c

d

e

f

g

h
devel

a

b

c

d

e

f

g

h

i master *

 Creates an additional “merge commit”.
 Conflicts may occur.

git merge devel

Additional “merge” 
commit is created.



R
e

m
in

d
e

r…

master devel *

a

b

c

d

e

f

g

h

Branch rebasing

 For rebase operations, the branch being rebased must be the 
current branch (* in the figures below).

 Rebase operations re-write history: the ID of rebased 
commits is modified (‘ in the figures below).

 Branches can be rebased on other branches, or on an older 
commit of themselves (interactive rebase).

git rebase 

master 

devel *

a

b

c

d

e

f’

g’

h’

master

Cherry-picking

* master devel *

a

b

c

d

e

f

g

h

* master

a

b

c

d

e

f

g

h

git cherry-pick 

<g commit>

 “copy” changes introduced by a commit on 
another commit.

g’



R
e

m
in

d
e

r…
Working with remotes

git push

git push Push (upload) changes on current branch to a remote.

git push -u origin <branch> When pushing a newly created branch to the remote for the 1st time. “-u” is short for “--set-upstream”

git fetch Retrieve (download) all changes from the remote.

git pull git fetch + git merge of current branch with its remote counterpart.

git clone Create a local copy of a remote repository.

git fetch

git pull

git clone

git push –u 

origin <branch>



R
e

m
in

d
e

r…



rewriting history
power (and responsibility) at your fingertips 

with interactive rebase and git reset



git commit --amend
Overwrite (re-write) the latest commit of a branch



Amending the latest commit of a branch

A

B

0f1c3bc

b1241f5

First commit to new repo

Addd a README.md file Assume that we realize we made a mistake in a file, after a 
new commit was made.

 In addition, there is also a typo in the commit message…

git add README.md

A

B

First commit to new repo

Addd a README file

Symbolizes the “staged” 
corrected README.md file

A

B’

0f1c3bc

57dc232

First commit to new repo

Add a README file

git commit –m “Fix typo in README”

A

B

C

First commit to new repo

Addd a README file

Fix typo in README

Possible but not ideal:

• New commit just to fix a typo !

• Typo still present in the second commit message !

git commit --amend –m “Add 

a README file”
Cleaner solution

Commit ID is modified !



Re-writing the latest commit (amending)

git commit –-amend

git commit --amend –m “new message”

git commit --amend --no-edit

To amend the latest commit of a branch:

1. Stage the changes you want to make to your commit, or, if you just want to modify 
the commit message, don’t stage anything.

2. Run one of the git commit --amend commands as shown below:

 This will open an editor where you can modify the commit message interactively.

 This is to enter the new commit message directly in the command.

 This is to keep the commit message unchanged (only edit the content of the commit).



demo: commit amending



interactive rebase



A

B

C

add function_1()0f1c3bc

b1241f5 add function_2()

woopsie, forgot to test. Fixed 
bug in function_1() 

ae7c31a

fix typo in function_1() !!

Committed test output file by 
mistake.

57dc232

ba08242

D

E

Commit history of your new feature …

F New feature completedc3738a7

G Add test for new feature57d33ab

Interactive rebase: re-order, squash, and delete commits

… and how you wish it was.

A'

B'

C'

add function_1()0f1c3b7

b1241f3 add function_2()

New feature completed 
and tested

de7c91e

Merge 
commits

Re-order 
and merge 
with A

delete !



Standard vs. interactive rebase

git rebase 

master

Standard rebase
replay commits on top of 

another base commit.

devel *

master

HEAD

master

devel *HEAD
A

B

C

D

E

git rebase 

–-interactive 

master

Interactive rebase
same, but with more control 

over how commits are replayed:

 re-order
 delete
 merge (squash)

master

devel *

HEAD

A’

B’

D+E

A

B

C

D

E



git rebase --interactive/-i <commit X ref>

 Starting from the specified <commit X>, Git opens a text editor where you interactively 
give instructions on how to modify the history of all descendent commits of X by:

• Re-ordering commits.
• Merging one or more commits together.
• Deleting commits.

 Then Git will rewind to <commit X>, and re-apply the descendant commits as instructed.

17dc23c

ba08242

c3738a7

57d33a1 HEAD

HEAD~1

HEAD~2

HEAD~3commit X

Rebased commits
=

descendants of 
commit X

$ git rebase –i 17dc23c

$

$ git rebase –i HEAD~3

$

To rebase the last 3 commits (descendants of commit X), 
these 2 commands will yield the same result:  

Absolute reference 
to commit X

Relative reference 
to commit X

Interactive rebase: re-order, squash, and delete commits
parent of first commit in the rebase



Committed test output file by 
mistake.

A

B

C

add function_1()0f1c3bc

b1241f5 add function_2()

woopsie, forgot to test. Fixed 
bug in function_1() 

ae7c31a

fix typo in function_1() !!57dc232

ba08242

D

E

F New feature completedc3738a7

G Add test for new feature57d33ab

X 17dc23c 

$ git rebase -i 17dc23c $ git rebase -i HEAD~7or

pick 0f1c3bc add function_1()

pick b1241f5 add function_2()

pick ae7c31a woopsie, forgot to test. Fixed bug in function_1() 

pick 57dc232 fix typo in function_1() !!

pick ba08242 Committed test output file by mistake.

pick c3738a7 New feature completed

pick 57d33ab Add test for new feature.

# Commands:

# p, pick <commit> = use commit

# s, squash <commit> = use commit, but meld into previous commit

# f, fixup <commit> = like "squash", but discard log message

# d, drop <commit> = remove commit

... there are more commands.

opens the following in Git's default editor (e.g. vim)

pick 0f1c3bc add function_1()

f ae7c31a woopsie, forgot to test. Fixed bug in function_1() 

f    57dc232 fix typo in function_1() !!

pick b1241f5 add function_2()

d ba08242 Committed test output file by mistake.

pick c3738a7 New feature completed

s    57d33ab Add test for new feature

manual editing of file.

Reversed 
order!

Commits are re-applied 
in top to bottom order

Merge 
commits

delete !

Re-order 
and merge 
with A



Save and close to start rebasing (":wq" or “:x” in vim).

Rebase completed

If there are any conflicts, you will 
need to solve them manually.

$ vim <file with conflict>  # manual conflict resolution

$ git add <file(s) with conflict>

$ git rebase --continue

For squashes, Git will open an editor so you can edit the commit message. 

pick 0f1c3bc add function_1()

f ae7c31a woopsie, forgot to test. Fixed bug in function_1() 

f    57dc232 fix typo in function_1() !!

pick b1241f5 add function_2()

d ba08242 Committed test output file by mistake.

pick c3738a7 New feature completed

s    57d33ab Add test for new feature

History after the rebase:

Rebase re-writes history  ->  Commit ID values are now different !

A'

B'

C'

add function_1()0f1c3b7

b1241f3 add function_2()

New feature completed and testedde7c91e



Su
p

p
le

m
e

n
ta

ry
m

at
e

ri
al

…

pick 0f1c3bc add function_1()

f ae7c31c woopsie, forgot to test. Fixed bug in function_1() 

f    57dc233 fix typo in function_1() !!

pick b1241f5 add function_2()

d ba08242 Committed test output file by mistake.

pick c3738a7 New feature completed and tested

f    57d33ab Well, there was still a bug and a typo… now fixed

# Rebase 17dc23c..0f1c3b2 onto 17dc23c

#

# Commands:

# p, pick <commit> = use commit

# r, reword <commit> = use commit, but edit the commit message

# e, edit <commit> = use commit, but stop for amending

# s, squash <commit> = use commit, but meld into previous commit

# f, fixup <commit> = like "squash", but discard this commit's log message

# x, exec <command> = run command (the rest of the line) using shell

# b, break = stop here (continue rebase later with 'git rebase --continue')

# d, drop <commit> = remove commit

#

# These lines can be re-ordered; they are executed from top to bottom.

#

# If you remove a line here THAT COMMIT WILL BE LOST.

#

# However, if you remove everything, the rebase will be aborted.

#

# Note that empty commits are commented out

You can delete a line to delete a commit 
(instead of changing "pick" to "d"/"drop".

To abort the rebase, delete all lines in the 
file (comments do not need to be deleted).

Commits are re-applied in the order from 
top to bottom.

squash vs fixup:
Both will squash the specified commit into 
the previous one, the difference is how the 
log message is handled:

 fixup: log message the squashed commit is 
discarded, the message of commit into which 
the squash occurs is kept.

 squash: an editor opens to let you 
interactively enter a new log message. It is 
pre-filled with the messages of both commits. 

Example of interactive rebase file (in full):  

Parent commit (i.e. commit X) 
Last descendent

Commands: either the 1-letter shortcut or 
the full command name can be used.



--fixup commits
 When you realize you made a mistake in an earlier commit, you can directly tag it as 

a fixup with  git commit --fixup=<hash/ref of commit to be fixed>

 Running an interactive rebase with the  --autosquash option added, Git will 
automatically re-order commits for you.

# work on the fix for function_1(). Commit it as a --fixup.

$ git add <file that was fixed>

$ git commit --fixup=ba0824b

$

# work on fix for function_2(). Commit it as a --fixup.

$ git add <file that was fixed>

$ git commit --fixup=c3738a7

$

# Now we can rebase with the –autosquash option.

$ git rebase –i --autosquash HEAD~5

$

17dc23a

ba0824b

c3738a7

57d33a3

HEAD~5

add function_1()

add function_2()

do something else

fixup ! add function_2()

fixup ! add function_1()b1241f2

de7c91b

pick ba0824b add function_1()

fixup b1241f2 fixup ! add function_1()

pick c3738a7 add function_2()

fixup de7c91b fixup ! add function_2()

pick 57d33a3 do something else

with the --autosquash option enabled, Git automatically places 
the fixup commits in at the correct position, and marks them as 
"fixup". No manual editing needed !

17dc23a

d34e88a

4783b33

c23de56

HEAD~5

add function_1()

add function_2()

do something else

History after the rebase.
Commit hash are 
now different !

History before the rebase.



Su
p

p
le

m
e

n
ta

ry
m

at
e

ri
al

…
Rebasing the root commit (first commit of a repository )

 The regular  git rebase -i/--interactive command does not allow to 
edit the first commit of a Git repository. 

 To rebase history including the first commit, the  --root option must be added:

git rebase --root --interactive <tip commit of branch> 

$ git rebase --root --interactive HEAD

$ git rebase --root –i master

With the --root option, you must indicate the tip of the branch to rebase, 
not the parent commit (there is no parent to the root commit)

Examples:



demo: interactive rebase



exercise 1
The vim cheat-sheet rebase



git reset



 The  git reset command moves the HEAD pointer to the specified commit.

 Commits between the former HEAD position and its new positon will be "removed" from history 
upon the next commit (but they will remain in the Git database for a little while).

git reset – move the HEAD to a specific commit

A

B

C

0f1c3bc

b1241f5

ae7c31a

57dc232D HEAD

git reset HEAD~2

B

C

b1241f5

ae7c31a

57dc232D

A 0f1c3bc A

B

E

0f1c3bc

b1241f5

23d77bc

git commitgit reset b1241f5

git reset <commit to where HEAD should be moved>

HEAD

HEAD



 3 options allow to specify how the index and working tree should be affected:

• --soft : reset the HEAD only (keep staged content in the index).

• --mixed: reset the HEAD + the index.

• --hard : reset the HEAD + the index + the working tree. 

git reset --mixed/--soft/--hard  <commit ref>

mixed is the default value (so you don’t need to actually specify it)

--soft

--mixed

--hard

HEAD 
Staged content

work treeindex

Files on disk

Reset options effects: a check mark indicates elements that are reset.

The --hard option resets 
(overwrites) the working tree !

This can lead to data loss if you 
have uncommitted changes.

git reset – move the HEAD to a specific commit



git reset --soft use case: merge the last 2 commits into one

* dev

master

HEAD

* dev

master

HEAD

git reset --soft HEAD~2 git commit

* dev

master

HEAD

The HEAD was reset, but the 
modifications introduced by the 
“removed" commits are still in 
the index and the working tree.

Changes introduced from 
the “removed” commits 
are still in the index **.

** If there are conflicts between the content of the 
“removed” commits, the latest version of the conflicting 
lines remains in the index.

our intention is 
to merge these 
2 commits.

--soft : reset the HEAD only (keep staged content in the index).

Since all modifications are still staged, 
we can directly create a new commit, 
which is the merge of the two commits 
we had earlier.



git reset --mixed use case: clear the staging area from new content

* dev

master

HEAD

This represents staged 
content: it's in the index, 
but it’s not committed.

* dev

master

HEAD

git reset --mixed HEAD

git reset HEAD

The newly staged content is now 
removed from the index, because the 
index was reset to its state at the 
HEAD position.

But any changes made in the working 
tree is still there: --mixed does not 
modify the working tree, so we are 
not losing any work.

 --mixed : reset the HEAD + the index.

 Useful to clear the index from newly staged content, e.g. when you staged something by mistake.



git reset --hard use case: reset a branch to a remote 

HEAD

origin/master* master

 --hard : reset the HEAD + the index + the working tree.

 When a remote branch had "forced updates" (i.e. someone changed its history), 
a --hard reset is often a good choice to keep a clean history.

git reset --hard origin/master

* master origin/master

Someone applied a fixup to the last 2 
commits, so they are now different.

As a result, history diverges between the 
local and remote master branches.

* master origin/master

With a --hard reset, the 
history is much cleaner!

We can merge with a git pull, but 
that will leave us with an ugly history!

git pull

Additional 
“merge” commit



git reset --hard use case: reset a reset, a merge, a rebase (or anything, really)

 Example: When you thought you're on dev, but you really are on master…

HEADba0824b

dev

master *

git reset --hard HEAD~2
git reset --hard ba0824b

git reset --hard HEAD@{1}

HEAD

dev

master *

HEAD

oups, I was on the 
wrong branch! Did I 
just lose 2 days of 
work on master ??

dev

master *

 A  --hard reset can be used to undo (almost**) any operation, and get back exactly to the previous state * 
* as long as Git did not do garbage collection on orphaned commits and deleted them (see two slides further).

Our intention is to 
delete these 2 
commits

If you reset  --hard changes that have not been committed/staged/stashed, you will lose your work!

(untracked files are not affected)

What if I don’t 
remember this 
hash ?

Git reflog to 
the rescue…



Su
p

p
le

m
e

n
ta

ry
m

at
e

ri
al

…
The Git reflog and the HEAD@{x} relative reference

 git reflog shows the “reflog”: a chronological log of all operations that were performed on a repository.  

git reflog

HEAD@{0}

HEAD@{1}

HEAD@{2}

...

HEAD@{x}

Current position of HEAD.

Positon of HEAD 1 operation ago.

Positon of HEAD 2 operations ago.

Positon of HEAD x operations ago.

$ git reflog

11d4dc8 (HEAD -> master, dev) HEAD@{0}: merge dev: Fast-forward

5061456 HEAD@{1}: checkout: moving from dev to master

11d4dc8 (HEAD -> master, dev) HEAD@{2}: commit: Update README

5061456 HEAD@{3}: checkout: moving from master to dev

5061456 HEAD@{4}: commit: Add README file

0f84d17 HEAD@{5}: commit (initial): Initial commit

Commit IDs of commit at HEAD position

 The  HEAD@{x} notation indicates the positon of the HEAD pointer relatively to the reflog.

 It can be used as a commit reference, e.g.  git reset --hard HEAD@{1}.



Su
p

p
le

m
e

n
ta

ry
m

at
e

ri
al

…

 When a commit (or a group of commits) are no longer part of a branch or referenced by a tag, 
they are said to be orphaned. E.g. in the diagram on the right, after a git reset, two commits 
(dashed circles) are now orphaned. 

 Orphaned commits remain accessible in Git's database for a while, until they are 
garbage collected (i.e. deleted) by Git.

 To retrieve content from an orphaned commit, you can:

• Display its content with git show <orphaned commit ID>
• Check it out in a new branch: git switch -c <orphaned commit ID> or 

git checkout -b <orphaned commit ID> 

• Check it out in detached head mode: git checkout <orphaned commit ID>
• Reset your current branch to it: git reset --hard <orphaned commit ID>      

Warning: this last option might itself create orphaned commits – also make sure you have a 
clean working tree, otherwise uncommitted changes will be lost). 

 If you don't know the hash of an orphaned commit, you can find it by looking at the output of 
git reflog --all. This is a log of all operations that that were done by Git, and all commits 
will be referenced in there.

 If, for some reason, you want to force-delete all orphaned commits (and associated data), run 
the following command sequence. Warning: only do that if you understand why you're doing it. 

git reflog expire --expire=all --all

git gc --aggressive --prune=now

dev

master

HEAD

What happens to orphaned commits ?



Commands illustrated in this section (in particular git rebase and git reset) often 
result in a modification of a repo’s history.

When pushed to a remote, this can cause various levels of “inconvenience” to other 
people working on the same project.

 Ideally, do this type of operations before pushing to a remote.

 If you nevertheless need to push history modifications:

• Use “force” push:  git push --force
• Coordinate the update with other people working on the repo, as they might need to do 

a git reset --hard origin/<branch name> on their local repo.

 (Try to) never rewrite a “production” branch shared with the outside world.
Typically this would be the “main” or “master” branch.

History overwrite warning !



exercise 2
The big reset



git checkout
The "detached HEAD" state explained



R
e

m
in

d
e

r…
Reminder: checkout the entire state of an earlier commit

git checkout <commit reference>

$ git checkout ba08242

$ git checkout HEAD~10

$ git checkout v2.0.5

Example:

$ git checkout ba08242

Note: checking out 'ba08242'.

You are in 'detached HEAD' state. You can look 

around, make experimental changes and commit 

them, and you can discard any commits you make 

in this state without impacting any branches 

by performing another checkout.

 Checking out a commit will restore both the working tree and the index to the 
exact state of that commit.

 It will also move the HEAD pointer to that commit. 

 But you will enter a "detached HEAD" state….

 To get back to a “normal” state:
git checkout <branch>



HEAD

master

ba0824a

devel

Detached HEAD: when HEAD points directly to commit instead of a branch 

git checkout ba0824a

ba0824a

These commits do not 
belong to any branch !

Add 2 commits

 After a  git checkout <commit> command, HEAD points directly to a commit rather than 
a branch: this is known as detached HEAD state.

What if I go back to a “real” branch ?

HEADmaster *

devel

HEADba0824a

devel

master



Detached HEAD state

git checkout master

HEAD

ba0824a

HEAD

ba0824a

meanwhile, somewhere 
in the object store…

Daddy, did you 
see grandpa ?

c3738a7

• Commits that are not longer referenced by a branch or a tag are not shown anymore by git log.
• These commits are still in the object store (until they get garbage collected), but can only be 

reached directly through their commit hash - or reflog references HEAD@{x}. 

These commits do not 
belong to any branch !

master

master

devel

devel

ba0824a

devel

tmp

master * HEAD



git switch –c/--create <branch name>

git checkout –b <branch name>

HEAD

ba0824a

devel

ba0824a

master
devel

tmp * HEAD

Creating a new branch while in detached HEAD state

master

Note:  git switch -c is the modern alternative to  git checkout -b in Git versions >= 2.23

 To preserve commits created in detached HEAD state, a new branch can be created at any time while 
we are in “detached head” state. After the branch is created, we are no longer in detached HEAD state.

In “detached head” state On a regular branch (here “tmp”)



Detached HEAD

 In practice, Git will give you a lot 
of warnings and advice when in 
detached HEAD state:

$ git checkout master
Warning: you are leaving 2 commits behind, not connected to 

any of your branches:

0860b65 another commit outside of branch

0dc47b9 where will that lead us ??

If you want to keep them by creating a new branch, this may 

be a good time to do so with:

git branch <new-branch-name> 0860b65

Switched to branch 'master'

$ git checkout e35e2a4
Note: switching to 'e35e2a4'.

You are in 'detached HEAD' state. You can look around, make 

experimental changes and commit them, and you can discard 

any commits you make in this state without impacting any 

branches by performing another checkout.

If you want to create a new branch to retain commits you 

create, you may do so (now or later) by using -c with the 

switch command. Example:

git switch -c <new-branch-name>

HEAD is now at e35e2a4 removed from git file

Git reminds you of the 
hash of the commit, in 
case you don’t have it.



the git stash
Git’s “cut and paste” functionality



When workflow interruption strikes …

Sometimes we quickly need a clean working tree, but without losing un-committed changes 
already made to our files. For instance:

 Work on in a different branch (e.g. fix a bug) before finishing work on the current branch.

 Move current edits to another branch (e.g. you started to work in the wrong branch).

 Do a rebase (rebase with un-committed is not allowed).

git stash Saves un-committed changes in the working tree (both staged and un-staged) to 
a “temporary commit“. Then resets the working tree to the current HEAD position 
(i.e. the last commit in your current branch), leaving a clean working tree.

Restores stashed modification by merging them into the current HEAD (This can 

potentially require manual conflict resolution).
The restored content is deleted from the stash.

git stash pop



git stash

Example: make edits on a different branch while having work in progress.

git switch devel

… make edits to devel …

git commit ...

git switch feature

git stash pop

un-committed changes

stash stackdevel

feature *

HEAD

stash stack stash@{0}

stash stack stash@{0}

stash stack



master *

devel

git stash

git switch devel

Example: move edits to different branch (e.g. started working on the wrong branch).

git stash pop

un-committed changes stash stack

stash stack stash@{0}
master

devel *

stash stackmaster

devel *

Depending on your edits (if they do not 
overwrite a file on the branch you are switching 
to), you might be able to switch branches 
directly without having to do and stashing.



Su
p

p
le

m
e

n
ta

ry
m

at
e

ri
al

…

 More than one set of changes can be stashed (see next slides).

 Although stashed items can in principle remain in the stash for a long time, it’s best to view it as a 
temporary location. Don’t turn it into an alternate development branch!

 The content of the stash stays local (even if you git push), so there is not backup for it on a remote.

 Anything done with  git stash can also be achieved using branches (i.e. create new temporary 
branch and later rebase/merge its content), it's just more convenient to do it with git stash.

 By default untracked files are not stashed. To stash them, the -u/--include-untracked option 
must be added.

 By default, both staged and un-staged modifications are stashed. However, the distinction between 
staged and unstaged changes is lost upon applying the stash and all modifications will be un-staged. 
Note: to not include staged changes, the --keep-index option can be used.

 If needed, the content of the stash can be deleted with 

 git stash is actually a shortcut for git stash save                           
(save is the default action for the git stash command).

Additional info about git stash…

git stash clear



Su
p

p
le

m
e

n
ta

ry
m

at
e

ri
al

…

stash@{0}

stash@{1}

stash@{2}

stash@{0}

stash@{1}

stash@{0}

stash stack

git stash git stash git stash pop

stash@{0}

stash@{1}

 git stash can actually store multiple stashes.

 git stash pop is a shortcut for git stash apply + git stash drop

 specific stashes can be accessed with stash@{x} (where x = stash index)

 git stash clear deletes all stashes.

stash@{0}

stash@{1}

git stash drop 

stash@{1}

stash@{0}

stash@{1}

stash@{2}

git stash apply git stash drop
( git stash apply stash@{0} ) ( git stash drop stash@{0} )

git stash clear

Using multiple stash slots



Su
p

p
le

m
e

n
ta

ry
m

at
e

ri
al

…
Listing the content of the stash

git stash list

git stash show

git stash show –p            # detailed diff view of stash item.
git stash show –p stash@{x}  # show a specific stash item.

 List the content of the git stash:

 Show the content of a specific stash item. By default,  stash@{0} is shown.
Adding the –p option displays the exact content (diff view) of a stash item.

$ git stash list

stash@{0}: WIP on master: 86eae5c Adds new file

stash@{1}: WIP on master: 86eae5c Adds new file

Example:



Su
p

p
le

m
e

n
ta

ry
m

at
e

ri
al

…
git stash command summary

command description

git stash

git stash save “message”

stash uncommitted changes to a new stash item in the stash@{0} spot. 
An optional “message” can be added.

git stash pop

git stash pop stash@{x}

Shortcut for apply + drop.
By default, stash@{0} is popped. Other stashes can be popped with stash@{x} notation.

git stash apply

git stash apply stash@{x}

Merge stashed item into current branch.

git stash drop

git stash drop stash@{x}

Delete item from stash. By default, item stash@{0} is deleted.

git stash list List content of stash.

git stash show

git stash show -p

Show summary view of stashed item content.
Show detailed view of stashed item content.

git stash clear Delete all items from stash.



git tags
Label important commits



Why use tags ?

Tags are “labels” used to annotate important commits.

 Typical use case: tagging commits corresponding to versions. 
E.g. 1.0.7, v1.0, v2.1, etc.

devel

a

b

c

d

e

f

g

main

v1.0

v1.1

v1.2

There are 2 types of tags:

 Lightweight tags - pointers to a commit (like a branch).

 Annotated tags - pointers to commits with additional metadata:

 Tagger (person who made the tag).
 Date and time.
 Message.

tag 12.04

Tagger: Alice Smith <alice@redqueen.org>

Date:   Tue Feb 22 20:44:27 2022 +0100

Version 12.04 LTS (Precise Pangolin)

commit 45d56fa3c75e5e6a67d067e9b8eae1679d3806e7

Example of annotated tag metadata

Tag message

Commit to which the tag is pointing



Creating tags

git tag <tag name> <commit reference>

$ git tag 1.1.0

$ git tag 1.0.9 ba0824a

$ git tag 1.0.8 HEAD~3

$ # Create an annotated tag:

$ git tag -a -m "v20.04: Precise Pangolin" 20.04

Examples:

git tag -a -m “message” <tag name> <commit reference>

git tag 1.1.0

git tag 1.0.9 ba0824a

git tag 1.0.8 HEAD~3

If no commit reference is specified, the tag 
is applied to the current HEAD commit.

a

b

c

d

emain

1.0.8

1.0.9

1.1.0

ba0824a

HEAD

a

b

c

d

emain

ba0824a

HEAD

a

b

c

d

emain 1.1.0

ba0824a

HEAD

Lightweight tag:

Annotated tag:

Having a message is compulsory for annotated tags (just like for commits).

illegal characters in tag and branch names

Spaces and characters such as ,~^:?*[]\ are not 
allowed in tag and branch names. It is recommended 
to stick to lowercase letters, numbers, “–”, and “.”.



Listing tags
$ git tag

1.8.4

1.8.5

1.8.5-rc1

2.0.5

 List all tags (sorted alphabetically):

git tag

Examples:

git tag -n

git tag -l <search pattern>

 List all tags and show their message (for annotated tags):

 List only tags whose name matches a specific pattern:

git show <tag name>

 Show content of a specific tag (annotation and commit content): 

$ git tag -l 1.8.5*

1.8.5

1.8.5-rc1

$ git tag -n

12.04   v12.04 LTS Precise Pangolin

12.10   v12.10 Quantal Quetzal

$ git show 2.0.5

tag 12.04

Tagger: Alice Smith <alice@redqueen.org>

Date:   Tue Feb 22 20:44:36 2022 +0100

v12.04 LTS Precise Pangolin

commit 1ba62733c75e5e6a67d067e9b8eae1679d3806e7

Author: Mad Hatter <clocks@wonder.org>

Date:   Tue Feb 22 20:35:09 2022 +0100

Commit message...

diff --git a/file b/file

…

git log --all --decorate --oneline --graph

 The “adog” command will also show tags:



Sharing tags (push to remote)

By default  git push doesn’t upload (push) tags to remote servers.

 You can push a specific tag with:

$ git push origin v2.3

 You can push all tags by adding the --tags flag to the push command. 

$ git push origin --tags

Example:

Example:

git push <remote name> <tag name>



Deleting tags

 To delete a tag from your local repository:

$ git tag –d v3.2

$ git tag –d 12.04

Example:

 To delete a tag from a remote:

$ git push origin --delete v3.2

Example:

git tag –d <tag name>

git push <remote name> --delete <tag name>

This will not remove the tag from remotes !

Note: this is the same command as for deleting a branch from a remote.



Checking out tags (revert the working tree to a specific tag)

 Tags are references to a commit, so you can use  git checkout <tag> to revert the 
working tree to its recorded state at the specified tag.

$ git checkout v2.0.1

$ git checkout 0.8.2

Example:

Performing such a checkout will put your repository in detached HEAD state:

 You can look at (or use) the “old version”, then switch back to a regular branch.

 If you plan to make changes and add commits to an older version, you can either:

• Create a new branch rooted at your version tag.
git switch -c <new branch> <tag> or   git checkout -b <new branch> <tag>

• Tag the (branchless) new commit your make so it doesn’t get garbage collected.

Reminder:



exercise 3
The backport



exercise 4
The treasure hunt

Note: this exercise can be done as exam to the course. This exercise has helper slides



While this exercise is somewhat gameified, it nevertheless covers many of the 
important operations and collaborative workflows you would encounter while 
doing real work:

• Each of the quests you will complete in this exercise can be seen as the 
equivalent of adding a new feature to a software or data analysis 
pipeline.

• Completing a quest, merging your work into the main branch and adding 
a tag, would be the equivalent of making a new release of your 
work/software.

Introductory notes

main

personal-branch
(feature branch)

devel

 main is the production branch, i.e. the branch on which only final, production ready, material is published. 
Do not work directly on the main branch.

 devel (for "develop") is the pre-release branch where the team will consolidate each "feature" (i.e. each 
quest of the treasure hunt) before merging it to main when a quest is completed.

 Short-lived personal branches (feature branches) will be created by each team member to add their work, 
before merging it into devel.

 As this is an exercise, and we do not have much time, the personal branches will only contain 1 (or sometimes 2) commits 
before they get merged into devel, but you can imagine that in a real application more commits would be added.

About the branches used in the exercise:



Exercise 4 help: branch – rebase – merge sequence 

 One of the objectives in the exercise is to keep a clean and readable history while collaborating.

 This is a suggested procedure when working on a new “feature”.

 In this example, Alice is the “captain” in the exercise.

main

create new 
team branch

main devel main devel

feature-cp

push new branch to remote,
other group members update their repo.

devel

mainmain devel

devel

main

create new 
personal branch

work on personal 
branch

merge personal branch 
into team branch

push changes to remote,
other group members update their repo.

feature-cp

At this point the 
personal branch 
can be deleted.



Exercise 4 help: branch – rebase – merge sequence 
 Bob is the “first-mate” of the crew. He retrieves changes made by Alice 

to the team branch (devel) and adds his own changes to it:

devel

main

devel

main

feature-fm

retrieve changes 
from remote

devel

main

feature-fm

rebase on team 
branch

push changes to 
remote

devel

main

feature-fm

At this point the 
personal branch 
can be deleted.

devel

main
When the feature is 

completed, someone 
merges into main and 
pushes to the remote

develmainmerge into 
team branch

v1.1.0

To indicate a new 
“release”, a tag is added. 



Exercise 4 help: creating a new repo on GitHub

1. In your GitHub account, go to Repositories and 
click on New (green button).

2. Create a new repo:

• Enter a Repository name.
• Add a short Description.
• Make the repo Public (default).
• Do not initialize the repo, as you will import data from 

an existing repository (leave all boxes unchecked).
• Click Create Repository.

3. Follow instructions to push an existing repository….
Note: the main branch’s name is already “main”, so you can skip “git branch -M main”.



Exercise 4 help: adding members to a GitHub repo.

1. On the homepage of the repo on GitHub, 
select the Settings tab.

2. In the Settings tab, click 
on Manage access.

3. Add your team members by clicking 
on Add people (green button) and 
entering their GitHub user name.



In order to push data (commits) to GitHub, you will need a personal access token (PAT).

1. In your user profile (top right), 
click on Settings.

2. In your Account settings, 
click on Developer settings.

3. In Developer settings, click 
on Personal access tokens. 

Go to next page

Exercise 4 help: generating a “personal access token” on GitHub



Exercise 4 help: generating a “personal access token” on GitHub

4. Add a Note (description) to your token and select 
the repo scope checkbox. The click Generate token. 

5. Copy the personal access token to a safe locations 
(for now maybe in a text file, but ideally in a password 
manager). You will not be able to access it again later.

6. When you will push content to GitHub for the first 
time in the project, you will be asked for your user 
name and password. Instead of the password, enter 
the personal access token you just created.



Su
p

p
le

m
e

n
ta

ry
m

at
e

ri
al

…

a look under git's hood
The Git object store



Su
p

p
le

m
e

n
ta

ry
m

at
e

ri
al

…

HEAD

branches/

config

description

hooks/

info/

objects/

refs

The Git object store

 The "object store" is where Git stores the data and 
metadata of the tracked files and commits.

 It's located in  .git/objects

Blobs: binary, compressed, file that stores the content of a file.
“blob” stands for “Binary Large OBject” (even if the object is not necessarily large)

Trees: Dictionary linking file names to blobs for a given directory.

Commits: metadata of each change introduced into the repository:
author, commit message, state of files, etc …

Tags: name (e.g. software version) that points to a specific to a commit. 

 Git stores data in 4 object types, all saved in the object store [.git/objects]:

.git directory



Su
p

p
le

m
e

n
ta

ry
m

at
e

ri
al

…
Blobs (Binary Large OBjects)

 File that stores the content of a file (in a binary and compressed format). 

 Does not store any metadata about the file, not even the file's name.

• two files with the same content have the same blob/SHA-1.

• two files with the same blob/SHA-1 have identical content. This allows fast comparison!

* almost: Git adds a few header bytes to the content when computing file SHA-1 values.
you can get the SHA-1 hash computed by Git with: git hash-object -t blob <file to hash>  

 Using a hash as file name creates so-called “content addressable” storage: the content of the file defines 
its location. This avoids any risk of losing content when overwriting files, since any change in a file will 
result in a new hash, and hence a new location.

.git/objects/fa/263b8bb9291aaa5059dad78bb38b63f4318c62

.git/objects/4a/b7e6dbb9b1dd73a3e0292ef1d1b2909d107309

For performance reasons, the 2 first characters of the SHA-1 hash are used as sub-
directory name (this avoids having too many files in the same directory). The remaining 
38 characters are the name of the file.

 Blobs are named after their content's SHA-1 hash*, and stored in the object store [.git/objects].



Su
p

p
le

m
e

n
ta

ry
m

at
e

ri
al

…

$ cd test_project

$ echo "This is just a demo

project" > README.md

$ git init

.git 

README.md

Content of working tree Content of object store ( .git/objects)Commands in shell

.git/objects/

info/

pack/

$ git add README.txt

$ echo "Free as in 

freedom" > LICENSE.txt

$ git add LICENSE.txt

$ cp README.md README_copy.md

$ git add README_copy.md

.git/objects/

info/

pack/

f5/e333dff2cf029ec213ce4bae9bc94e99381fb6

b0/282337246891c91e2eb67c87f0cea0923107ac

Nothing added to object store!
Because content of file1 and file3 is the same.

.git 

README.md

LICENSE.txt

README_copy.md

.git 

README.md

.git/objects/

info/

pack/

f5/e333dff2cf029ec213ce4bae9bc94e99381fb6

SHA-1 hash of "This is just a demo project" 

.git 

README.md

LICENSE.txt

.git/objects/

info/

pack/

f5/e333dff2cf029ec213ce4bae9bc94e99381fb6

b0/282337246891c91e2eb67c87f0cea0923107ac

SHA-1 hash of "Free as in freedom" 



Su
p

p
le

m
e

n
ta

ry
m

at
e

ri
al

…
Trees

 Tree = dictionary/table linking blobs to filenames - at a given directory level.

 Sub-directories are also tree objects, referenced by their parent directory.

 If two trees have the same hash, then their content is identical – fast comparison as 
there is no need to look at individual files in the tree's sub-directory.

 The top tree (root of working tree) can be seen as a snapshot of the entire file content 
at a given time.

src

test_project

LICENSE.txt

fun.py

main.py

README.md

main.py

fun.py

README.md

LICENSE.txt

src/

f5e333d blob

tree 
(src/ directory)

b028233

dd598fe

ba2906d

38405c6

57dc232Top tree                 (root directory)

38405c6

blob

blob

blob

content of README.md

content of LICENSE.txt

content of main.py

content of fun.py

Table/dictionary that links file names and 
subdirectories to their SHA-1 value. 



Su
p

p
le

m
e

n
ta

ry
m

at
e

ri
al

…
Trees

.git/objects/

info/

pack/

38/405c63f62a3cbb1b14e621c2cf4c94e85d88b9

81/5de0aff2e7b3a6ab90e967102b9745594be7e3

b0/282337246891c91e2eb67c87f0cea0923107ac

ba/2906d0666cf726c7eaadd2cd3db615dedfdf3a

c5/c30998ad0a9e8e46c5eb6ac65a2f0823af15a0

dd/598fe7a9f70724f115f3cf97b5879c0a10a3b2

f5/e333dff2cf029ec213ce4bae9bc94e99381fb6

content of object store [.git/objects]

blob

main.py

fun.py

README.md

LICENSE.txt

src/

f5e333d

tree )

b028233

dd598fe

ba2906d

38405c6

38405c6Top tree

c5c3099

 Trees are saved in the object store, as a file named after their hash – just like blobs.



Su
p

p
le

m
e

n
ta

ry
m

at
e

ri
al

…
Commits

 Commit objects are lightweight:

• they are a collections of metadata.
• they do not contain the data itself.

Author: Mad Hatter
Committer: Alice
Commit msg: Fix bug in function foo()
Date: 24.02.2020 10:43
Parent:

Tree: 57dc232

Content of a commit

45d56fa

815de0aff2e7b3a6ab90e967102b9745594be7e3SHA-1

ID of commit



Su
p

p
le

m
e

n
ta

ry
m

at
e

ri
al

…
 Commits point to a Tree object – the top tree object of the Git index content at the time the commit was made. 

This is how Git can retrieve the state of every file at a given commit.

 Commits point to their direct parent – forming a DAG (Directed Acyclic Graph) where no commit can be modified 
without altering all of its descendants. 

Author: Mad Hatter
Committer: Alice
Commit msg: Fix bug in function foo()
Date: 24.02.2020 10:43
Parent:

Tree: 57dc232

815de0acommit

main.py

fun.py

README.md

LICENSE.txt

src/

f5e333d blob

tree 
(src/ directory)

b028233

dd598fe

ba2906d

38405c6

57dc232Top tree                 (root directory)

38405c6

blob

blob

blob

Top tree =
snapshots of entire content

45d56fa

Top tree       

45d56facommit

Author: …
Committer: …
Commit msg: …
Date: …
Parent:

Tree: 28ad171

28ad171

fe3306a

fe3306aroot commit

Author: …
Committer: …
Commit msg: …
Date: …
Parent: none
Tree:

Top tree       bd654b1

bd654b1



Su
p

p
le

m
e

n
ta

ry
m

at
e

ri
al

…

Commit saved in object store, 
named after its hash 

$ git commit -m "Fix bug in function foo()"

[master (root-commit) 815de0a] Fix bug in function foo()

4 files changed, 4 insertions(+)

create mode 100644 LICENSE.txt

create mode 100644 README.md

create mode 100644 src/fun.py

create mode 100644 src/main.py

.git/objects/

info/

pack/

38/405c63f62a3cbb1b14e621c2cf4c94e85d88b9

81/5de0aff2e7b3a6ab90e967102b9745594be7e3

b0/282337246891c91e2eb67c87f0cea0923107ac

ba/2906d0666cf726c7eaadd2cd3db615dedfdf3a

c5/c30998ad0a9e8e46c5eb6ac65a2f0823af15a0

dd/598fe7a9f70724f115f3cf97b5879c0a10a3b2

f5/e333dff2cf029ec213ce4bae9bc94e99381fb6

content of object store [.git/objects]

command in shell

blob

tree

git commit triggers the creation 
of a commit object

 In our example, the object store has now 7 objects: 
• 4 blobs – one for each file tracked in the repo.
• 2 trees – src/ and the root of the working dir.
• 1 commit.

 Commits are saved in the object store, as a file named after their hash – just like blobs and trees.

Commits

Author: Mad Hatter
Committer: Alice
Commit msg: Fix bug in function foo()
Date: 24.02.2020 10:43
Parent:

Tree: 57dc232

Content of commit

45d56fa



Su
p

p
le

m
e

n
ta

ry
m

at
e

ri
al

…

 The Git index is a binary file located in [.git/index].

 The index has no copies of the data, it's only a table 
linking file names with blobs.

README.txt

script.py

…

cb1a054c…

83f2d93e…

work tree

0f1c3b71…

7cc5642c…

git index

0f1c3b71…

7cc5642c…

HEAD

README.txt

script.py

…

cb1a054c…

83f2d93e…

work tree

7cc5642c…

git index

0f1c3b71…

7cc5642c…

HEAD

cb1a054c…

README.txt

script.py

…

cb1a054c…

83f2d93e…

work tree

7cc5642c…

git index

7cc5642c…

HEAD

cb1a054c… cb1a054c…

git add README.txt

git commit

When a file is added/updated to 
the index, its content gets stored 
as blob in the object store.

cb1a054c…

.git

objects

7cc5642c…

0f1c3b71…

computes the SHA-1 hash for 
the top tree of the index, and 
uses it in computing hash of 
commit.

The Git index



Thank you for attending this course


