
www.sib.swiss

Robin Engler
Vassilios Ioannidis

Lausanne, 12-14 Oct 2022

Version control with Git - first steps

First steps with Git: course outline

 Introduction to Version Control Systems and Git.

 Git basics: your first commit.

 Git concepts: commits, the HEAD pointer and the Git index.

 Git branches: introduction to branched workflows and collaborative workflow
examples.

 Branch management: merge, rebase and cherry-pick.

 Retrieving data from the Git database: git checkout.

 Working with remotes: collaborating with Git.

 GitHub: an overview.

Course resources

slides, exercises, exercise solutions (available at end of day),
command summary (cheat sheet), feedback.

Course home page:

Google doc:

Questions: feel free to interrupt at anytime to ask questions,
or use the Google doc.

register for collaborative exercises (and
optionally for exam), FAQ, ask questions.

 This course focuses exclusively on Git concepts and command line usage.

 Many GUI (graphical user interface) software are available for Git, often
integrated with code or text editors (e.g. Rstudio, Visual Studio Code,
PyCharm, …), and it will be easy for you to start using them (if you wish to)
once you know the command line usage and the concepts of Git.

Command line vs. graphical interface (GUI)

Course slides

Regular slide
[Red]

Reminder slide
[Green]

Supplementary
material
[Blue]

Slide covered in detail during the course.

Material we assume you know.
Covered quickly during the course.

Material available for your interest, to read on your own.
Not formally covered in the course.
We are of course happy to discuss it with you if you have questions.

 3 categories of slides:

Learning objective

source: https://xkcd.com/1597

https://xkcd.com/1597

version control
a brief introduction

Why use version control ?

Version control systems (VCS), often also referred to as source control/code managers (SCM),
are software designed to:

 Keep a record of changes made to (mostly) text-based content by recording specific
states of a repository’s content.

 Associate metadata to changes, such as author, date, description, tags (e.g. version).

 Share files among several people and allow collaborative, simultaneous, work on the
repository’s content.

 Backup strategy:

• Repositories under VCS can typically be mirrored to more than one location.

• The database allows to retrieve older versions of a document: if you delete something and
end-up regretting it, the VCS can restore past content for you.

 In the case of Git, entire ecosystems such as GitHub or GitLab have emerged to offer
additional functionality:

• Distribute software and documentation.

• Team and product management tool (e.g. issue tracking, continuous integration).

A (very brief) history of Git

The first commit of Git’s own repository by Linus Torvalds in 2005.

 Created by Linus Torvald (who also wrote the first Linux kernel in his spare time…).

 Created to support the development of the Linux kernel code (> 20 million lines of code).

 First release in 2005 - in a self-hosting Git repository… of course :-).

Su
p

p
le

m
e

n
ta

ry
m

at
e

ri
al

…
(some of) The principles that guided the development of Git

Linus wasn't satisfied with existing version control software, so he wrote his own…
He had the following objectives (among others) in mind:

 Distributed development: allow parallel, asynchronous work in independent repositories that do
not require constant synchronization with a central database. Each local Git repo is a full copy of
the project so users can work independently and offline.

 Maintain integrity and trust: Since Git is a distributed VCS, maintaining integrity and trust
between the different copies of a repositories is essential. Git uses a blockchain-like approach to
uniquely identify each change to a repository, making it impossible to modify the history of a Git
repo without other people noticing it.

 Enforce documentation: in Git, each change to a repo must have an associated message. This
forces users to document their changes.

 Easy branching/merging: Git makes it easy to create new "lines of development" (a.k.a. branches)
in a project. This encourages good working practices.

 Free and open source: users have the freedom to run, copy, distribute, study, change and improve
the software.

Git basics
Working principle and definitions

Basic principle of Git (and VCS in general)

Our objective: version control the content of a directory on our local machine. For this we:

• Take snapshots (current content of files) at user defined time points.

• Keep track of the order of snapshots so their history can be recreated.

Time point 2

test_project

README.md

script.py [v2] doc

test_project

README.md

script.py [v3]

user_guide.md

publication.pdf

test_project

script.py

Time point 1 Time point 3

snapshot of directory at
time point 1

script.py

snapshot of directory at
time point 2

README.md

script.py [v2]

snapshot of directory at
time point 3

user_guide.md

publication.pdf

README.md

script.py [v3]

c1 c2

script.py

README.md

script.py [v2]

user_guide.md

publication.pdf

c3

Definitions – snapshots are called “commits”

Time point 2

test_project

README.md

script.py [v2] doc

test_project

README.md

script.py [v3]

user_guide.md

publication.pdf

test_project

script.py

Time point 1 Time point 3

README.md

script.py [v3]
ba08242c3738a757d33a1

 Commit = snapshot + metadata (author, time, commit message, parent commit ID, etc. …).

 Create a new commit = record a new state of the directory’s content.

Each commit has a unique ID.
(shown here is abbreviated form)

This represents
a "commit"

3c1bb0cd5d67dddc02fae50bf56d3a3a4cbc7204 Each commit has a unique ID number / hash (40 hexadecimal characters):
commit ID

Working tree

Definitions: commits are stored in a repository (or “repo”)

 Repository/repo: directory under Git control (a collection of commits).

 Not all files in a directory under Git control have to be tracked.
There can be a mix of tracked and untracked files.

doc

test_project

README.md

script.py

user_guide.md

publication.pdf

Personal_notes.md

.git “database” of the Git repository.
• Contains the history of the repo and all other repo-related files.
• Each Git repo has its own, separate, “database”.

Untracked file: file present in the git repo directory, but not under version control.

Tracked file: file under Git version control.

Git repository

 Working Tree: current content (on your computer) of a Git repository.

Representation
convention: each circle
represents a commit to
the Git repo.

Definitions

 Repository history: history of commits (chronology or commits).

First commit in the history of the repository

Representation convention:
different colors indicate
different Git “branches”.

Some commits can
have 2 parents

 Branch: refers to a “line of development” within the commit history.
(technically a branch is simply a reference to a commit)

Definitions: the git index

In Git, committing content is a 2-step process:

1. Staging: new content that should be part of the next commit must first be added to the git index (sometimes
also called staging area). This process is referred to as staging.

2. Committing: a new commit containing the content of the index is added to the repository.

Git databaseworking directory

git add

README.md

script.py git commit

README.md

script.py

test.py

c1 README.md

script.py

test.pytest.py

personal_notes.md

This file is not added (untracked),
because we don’t want it in our commit.

git index / staging area

git index = content of your next commit.
commit = snapshot of the git index at a given time.

Definitions: the git index (continued)

• Why do we need the git index ?
• Why not simply commit the content of the directory directly ?

The objective of this 2-step procedure is to let users craft “well thought” commits.

 Commits are meant to be meaningful units of change in your code base (or the content you track).
 Not all changes in the working directory need to be part of the commit.

Examples of Git use cases

Local repo, single branch

Use case
• Keep a documented log of your work.
• Go back to earlier versions.

Local repo, branched workflow
(multiple development lines)

Use case
• Service in production with

continuing development in
parallel (e.g. new feature).

Collaboration with
distributed and central repos.

Use case
• Collaborate with others.
• Distributed development.

These two cases provide no backup !! only versioning. Each user has a full copy of the data*.
* Provided they regularly sync their local repo.

Exercise 1

Exercise 4Exercises 2 and 3

Su
p

p
le

m
e

n
ta

ry
m

at
e

ri
al

…

Local vs. Remote repository

 When creating a new Git repository on your computer, everything is only local.

 To get a copy of your repository online, you must take the active steps of:

• Creating a new repository on a hosting service (e.g. GitHub, GitLab, Bitbucket).

• Associating the online repository with your local repo.

• Push your local content to the remote.

 By design, Git does not automatically synchronize a local and remote repo.
Download/upload of data must be triggered by the user.

By default, everything stays local.

Git basics
your first commit

Configuring Git

 The minimum configuration is setting a user name and email.
These will be used as default author for each commit.

 Setting user name and email:

[alice@local ~]$ git config --global user.name "Alice"

[alice@local ~]$ git config --global user.email alice@redqueen.org

[alice@local ~]$ git config --global --get user.name

Alice

[alice@login1 ~]$ git config --global --get user.email

alice@redqueen.org

git config --global user.name <user name>

git config --global user.email <email>

 Config values can be retrieved by adding the --get option.

 Examples:

 User related settings are stored in:

 Linux: /home/$USER/.gitconfig

 Windows: C:/Users/<user name>/.gitconfig

 Mac OS: /Users/<user name>/.gitconfig

Su
p

p
le

m
e

n
ta

ry
m

at
e

ri
al

…
Git config: changing the default text editor

 On most systems, the default editor that Git uses is “vim”.

However, this can be configured with the following config command:

git config --global core.editor <editor name>

git config --global --get core.editor

[alice@local ~]$ git config --global core.editor nano

[alice@local ~]$ git config --global --get core.editor

nano

 Example: changing the default editor to “nano” (another command line editor).

Su
p

p
le

m
e

n
ta

ry
m

at
e

ri
al

…

Depending on their scope, Git configurations apply to all Git repositories of a user, or only to a specific repository.
The main 3 scopes are:

 Global (user wide): settings apply to all Git repositories controlled by the user.

 To save a setting as part of the global scope, add the --global flag to the git config command:
git config --global ...

 Stored in /home/<user name>/.gitconfig (Linux), C:\Users\<user name>\.gitconfig
(Windows) or /Users/<user name>/.gitconfig (Mac OS).

 Local (repo specific): settings apply only to a specific Git repo.

 Stored in the .git/config file of the repository.

 System (system wide): settings apply to all users and all repos on a given machine. This can only be modified
by a system administrator.

To show the list of all Git configurations, along with their scope and the location of the file they are stored-in:

Git config: scopes and file locations

git config --list --show-origin --show-scope

Creating a new Git repository

 Typing in any directory initializes a Git database in
the directory, and thereby turn it into a “Git repository”.

git init

 Everything is stored in this single .git directory:

 Content of all tracked files.

 Complete versioning history.

 All other data associated to the Git repository (e.g. branches, tags).

 This creates a hidden .git directory - i.e. an empty Git database -
at the root of the directory.

$ cd /home/alice/test_project

$ git init

Initialized empty Git repository in /home/alice/test_project/.git/

$ ls -a

./ ../ .git/ doc/ src/ README.md

 The content of the .git database can re-create the exact state of all your files at any
versioned time - e.g. if you delete a file accidentally or want to go back to an earlier version.

.git

doc

test_project

README.md

script.py

The Git database is stored in
this “hidden” directory.

Never delete the `.git` directory

State of the working directory just after git init

How it look on your file system How Git sees it List of files tracked by Git

.git

doc

test_project

README.md

script.py

doc

test_project

README.md

script.py

$ git status

On branch master

No commits yet

Untracked files:

doc/

README.md

script.py

$ git ls-files

<empty output>

$ git log

fatal: your current branch

'master' does not have any

commits yet

red = untracked file

Commit history

git status

show status of files in project directory.

git ls-files

show files tracked by Git.

git log

Show log of commits (i.e. history of repo).

new Git
database

default branch
name

 It does not matter whether the directory is empty or already contains files/sub-directories.

 Files in your git repo (project directory) are not automatically tracked by Git. They must be
manually added.

 Only files located in the git repo (or one of its sub-directories) can be tracked.

 You can have both tracked and untracked files in a project directory.

 You can have multiple Git repositories on your system – e.g. one per project or one per
code/script you develop.

 Git repos are self-contained – you can rename them or move them around on your file system.

 The ensemble of all files that are under Git control in a given git repository is generally referred
to as the repository's working tree.

Never delete the `.git` directory, you would lose the entire versioning history
of your repository (along with all files not currently present in the working tree).

Summary: when creating new Git repo…

Su
p

p
le

m
e

n
ta

ry
m

at
e

ri
al

…

A bare repo is a repo that has no working tree: it does not contain any instance of the files that are under Git
version control, but only the content of the `.git` directory/database.

This type of repo is found on remote servers used to share and sync changes across multiple Git repositories.
They can be initialized with the command: git init --bare

“Bare” repositories

Adding content to a Git repository

 By default, files in a directory under Git control are untracked.

 To add a new file – or a change in file content – to the Git repository,
the file must be explicitly added with the command.

 This allows to separate important files of your project - that you
want to be tracked by Git - from unimportant ones that should not
be tracked or shared (e.g. a test file of your own).

 After a file has been added once, it is considered as tracked by Git
(unless you manually remove it).

 Each time a file is modified, it must be added again for the new
content to get added to the next commit.

.git

doc

test_project

README.md

script.py

git add

Only files/directories located inside the project’s directory can be tracked.

State of the project directory after content is added with git add

How it look on your file system How Git sees it

.git

doc

test_project

README.md

script.py

doc

test_project

README.md

script.py

$ git status

On branch master

No commits yet

Changes to be committed:

new file: README.md

new file: script.py

new file: doc/quick_start.md

$ git ls-files

README.md

script.py

doc/quick_start.md

$ git log

fatal: your current branch

'master' does not have any

commits yet

$ git add script.py README.md doc

green = new or modified file

Files/changes are added,
but not committed yet.

List of files tracked by Git

Commit history

Committing content git commit -m/--message “your commit message”

git commit

$ git commit –m “Initial commit for test_project”

[master (root-commit) 8190787] Initial commit for test_project

3 files changed, 6 insertions(+)

create mode 100644 README.md

create mode 100644 script.py

create mode 100644 doc/quick_start.md

Example

Test project: a project to test version control with git

This is a small test project to illustrate the use of git.

Maybe I will add more content to it later.

#! /usr/bin/env python3

Quick-start guide for the test_project software

README.md

script.py

doc/quick_start.md

6 insertions = 6 lines added in total (across all files).

If no commit message is given, Git will open its default
editor and ask you to enter it interactively.

+ 1

+ 4 (empty lines also count)

+ 1

State of the project directory after git commit

How it look on your file system How git sees it List of files tracked by Git

.git

doc

test_project

README.md

script.py

doc

test_project

README.md

script.py

$ git status

On branch master

Nothing to commit, working

tree clean

$ git ls-files

README.md

script.py

doc/quick_start.md

$ git log

commit 8190787daa6fca93f5f25b819716d50c31bf5c26

Author: Alice <alice@redqueen.org>

Date: Sun Feb 9 15:07:56 2020 +0100

Initial commit for test_project

Clean working tree = current state of working tree
matches exactly with the latest commit.

Commit history

Now git log has finally something
to display (just 1 commit, for now).

Su
p

p
le

m
e

n
ta

ry
m

at
e

ri
al

…

$ git commit

Please enter the commit message for your changes. Lines starting

with '#' will be ignored, and an empty message aborts the commit.

#

On branch master

Changes to be committed:

new file: README.md

new file: script.py

new file: doc/quick_start.md

#

 In edit mode, you can now type
your commit message.

When no commit message is specified,
Git automatically opens a text editor.
By default, this editor is “vim”. Initial commit for test_project

 In the “vim” editor, press on the
key “i” to enter edit mode

Committing content: interactive commit message with the “vim” editor

Su
p

p
le

m
e

n
ta

ry
m

at
e

ri
al

…

Initial commit for test_project

This is the very first commit in this Git repo.

Way to go!

Please enter the commit message for your changes. Lines starting

with '#' will be ignored, and an empty message aborts the commit.

#

On branch master

Changes to be committed:

modified: README.md

new file: script.py

new file: doc/quick_start.md

#

~

~

 Commit message can be entered
over multiple lines.

 By convention, try to keep lines
reasonably short (<= 80 chars)

 Press “Esc” to exit “edit” mode.

[master (root-commit) 8190787] Initial commit for test_project

3 files changed, 6 insertions(+)

create mode 100644 README.md

create mode 100644 script.py

create mode 100644 doc/quick_start.md

Press “Enter” to exit vim and save
your commit message.

 You are now back in the shell and
your commit is done.

:wq
 Type “:wq” in the vim “command” mode.

Committing content: interactive commit message with the “vim” editor

 Initializing a new Git repo.
 Adding content to the Git repo.
 Making a commit with interactive commit message.

Live demo

Git does not impose any restrictions on what and when things can be committed.
(the only exception being you cannot commit zero changes)

However, it's best if you:

 Make commits at meaningful points of your code/script development.
For instance:

• a new function/feature was added (or a few related functions)
• a bug was fixed.

 Don't commit broken code on your main/master branch (i.e. the main branch).
You can commit them to a devel / feature branch, and later consolidate them
before merging with main/master (more on branch management later).

Making commits: some basic advice.

Ignoring files
 By default, files that are not added to the Git repo are considered by Git as "untracked", and are always

listed as such by git status.

 To stop Git from listing files as "untracked", they can be added to one of the following "ignore" lists:

.gitignore .git/info/exclude

 For files that should be ignored only by
your own local copy of the repository.

 Not versioned and not shared.

 Examples:
• files with some personal notes.
• files specific to your development

environment (IDE).

 Files are added by manually editing the two above-mentioned files.

 Files can be ignored based on their full name, or based on glob patterns.

• *.txt ignore all files ending in ".txt"
• *.[oa] ignore all files ending either in ".o" or ".a"
• logs/ appending a slash indicates a directory. The entire directory and all of its content are ignored.
• !dontignorethis.txt adding a ! In front of a file name means it should not be ignored (exception to rule).

 For files to be ignored by every copy of the repository.

 .gitignore is meant to be tracked: git add .gitignore

 Examples:
• outputs of tests
• .Rhistory, .RData
• .pyc
• .o, .a

Ignoring files: example

.git

src

test_project

.gitignore

.gitignore

module.py

module.pyc

info

exclude

my_tests.py

*.my_ide

*.a

large_data/

*.log

!main.log

*.pyc

 The .gitignore files themselves
should not be ignored: add them to
the Git repo so they are tracked.

 There can be multiple .gitignore
files per project, to create custom per-
directory ignore rules.

 Ignore rules in sub-directories are
inherited from the .gitignore of
their parent directory(ies).

ignored in entire project.

files ignored only in the
/src sub-directory.

testrun.log

main.log

test_project.my_ide

red = ignored file.

large_data

compiled.a

 Order (sometimes) matters: here the
rule to not ignore main.log must be
placed after the general rule to ignore
*.log files.

files ignored only in my
local copy of the repo.

This file is a config for my IDE software.
It is of no use to others. This is why it is
ignored in .git/info/exclude

 Adding files to .gitignore

Live demo

Su
p

p
le

m
e

n
ta

ry
m

at
e

ri
al

…

git add

Cross-platform collaboration: the line-end problem

Linux/Mac computer

Working directory
[project.git]

Windows computer

Git repo [.git]

xxx LF
xxx LF
xxx LF

xxx LF
xxx LF
xxx LF

Working directory
[project.git]Git repo [.git]

xxx CRLF
xxx CRLF
xxx CRLF

xxx CRLF
xxx CRLF
xxx CRLF

xxx CRLF
xxx CRLF
xxx CRLF

xxx CRLF
xxx CRLF
xxx CRLF

xxx LF
xxx LF
xxx LF

xxx LF
xxx LF
xxx LF

git add

online hosting service

Linux/Mac and Windows do not use the same “line-end” characters: this can cause problems
when collaborating with people who use a different operating system.

• Linux/Mac: uses LF (linefeed; \n) as line-ending character.
• Windows: uses CRLF (carriage-return + linefeed; \r\n) as line-ending character.

Wrong line-ending
for Linux/Mac!

Wrong line-ending
for Windows!

Text files created on Windows will not work well on Linux/Mac and vice versa.

Su
p

p
le

m
e

n
ta

ry
m

at
e

ri
al

…

git add

Windows computer

xxx CRLF
xxx CRLF
xxx CRLF

xxx CRLF
xxx CRLF
xxx CRLF

xxx LF
xxx LF
xxx LF

xxx LF
xxx LF
xxx LF

The solution is to ask Git to automatically convert between LF and CRLF during add/checkout operations.

Cross-platform collaboration: solution -> setting git config core.autocrlf

git config core.autocrlf true

git config --global core.autocrlf true

git config core.autocrlf input

git config --global core.autocrlf input

 On Windows computers: core.autocrlf true should be set so that
LF are automatically changed to CRLF each time a file is checked-in or
checked-out.

Linux/Mac computer

xxx LF
xxx LF
xxx LF

xxx LF
xxx LF
xxx LF

git add
xxx LF
xxx LF
xxx LF

xxx LF
xxx LF
xxx LF

xxx CRLF
xxx CRLF
xxx CRLF

 On Linux/Mac computers: core.autocrlf input should be set so
that LF line-endings (LF) are left untouched, and that CRLF are converted
to LF when a file is added (this will only be useful in the rare cases when a file with

CRLF ending is somehow present on the machine, e.g. because it was sent via email by a

Windows user).

git config core.autocrlf false

git config --global core.autocrlf false

Change setting for current repo.
--global = change setting for all repos.

 core.autocrlf false to disable LF/CRLF auto-modifications (this is the default):

core.autocrlf input

core.autocrlf true

Su
p

p
le

m
e

n
ta

ry
m

at
e

ri
al

…

When core.autocrlf is set to True (so this is in principle only for windows users), a warning is displayed
when files are added/checked-out to/from the git repo:

core.autocrlfwarnings

$ git add test_file.py

warning: LF will be replaced by CRLF in test_file.py

The file will have its original line endings in your working directory

Somehow the message is the same during check-in/check-out of files… so when
checking-in files (git add), the message is actually the wrong way round: it should
be something like “CRLF will be changed to LF in checked-in file”.

Displaying a repository’s
state and history

git status, git show and git log

 Display the status of files in the working directory.

git status

git status

$ git status

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

modified: LICENSE.txt

modified: README.md

Changes not staged for commit:

(use "git add <file>..." to update what will be committed)

(use "git checkout -- <file>..." to discard changes in working

directory)

modified: README.md

Untracked files:

(use "git add <file>..." to include in what will be committed)

untracked_file.txt

Green = new content in this file
has been staged and will be part

of the next commit.

Red = this file contains new content,
but it is not staged and will not be

part of the next commit.

tracked
files.

untracked
files.

Note: new content in a file can be partially committed: i.e., it’s possible to have some
changes in the file staged (added to the index), and some unstaged.

This is the case in the example above for the README.md file. Only the staged content
will become part of the next commit.

Su
p

p
le

m
e

n
ta

ry
m

at
e

ri
al

…
File status in Git

 Tracked
File that is currently under version control by Git (i.e. it is in the Git index).

 Untracked
File that is in the working directory, but not under version control by Git.

 unmodified - the content of the file is the same as in latest commit.
more precisely: the content is the same as in the commit to which HEAD is currently pointing.

 Ignored
Untracked file, but where Git is aware it should not be tracked.

 modified - the content of the file differs from the latest commit.
more precisely: it differs from the commit to which HEAD is currently pointing.

There are 4 possible statuses for files in Git:

git show

 Show the change in file content introduced by a commit.

git show <commit>

$ git show 89d201f
commit 89d201fd01ead6a499a146bc6da5aa078c921ecf

Author: Alice <alice@redqueen.org>

Date: Wed Feb 19 14:00:02 2020 +0100

Add stripe color option to class Cheshire_cat

diff --git a/script.sh b/script.sh

index d7bfdc8..fa99250 100755

--- a/script.sh

+++ b/script.sh

@@ -7,13 +7,28 @@

def Cheshire_cat():

- def __init__(self, name, owner=“red queen”):

+ def __init__(self, name, owner=“red queen”, stripe_color=“orange”):

+ self.stripe_color = stripe_color

Example:

git show with no argument, the latest commit on the current branch is shown

git log: display the commit history of a Git repo

git log

git log --oneline

git log --all --decorate --oneline --graph

$ git log

commit f6ceaac2cc74bd8c152e11b9c12ada725e06c8b9 (HEAD -> master, origin/master)

Author: Alice alice@redqueen.org

Date: Wed Feb 19 14:13:30 2020 +0100

Add stripe color option to class Cheshire_cat

commit f3d8e2280010525ba29b0df63de8b7c2cd7daeaf

Author: Alice alice@redqueen.org

Date: Wed Feb 19 14:11:56 2020 +0100

Fix off_with_their_heads() so it now passes tests

commit cfd30ce6e362bb4536f9d94ef0320f9bf8f81e69

Author: Mad Hatter mad.hatter@wonder.net

Date: Wed Feb 19 13:31:32 2020 +0100

Add gitignore file to ignore script output

Example: default view (detailed commits of current branch).

+ loads of other options (see git log --help)

$ git log --oneline
f6ceaac (HEAD -> master, origin/master) peak_sorter: add authors to script

f3d8e22 peak_sorter: display name of highest peak when script completes

cfd30ce Add gitignore file to ignore script output

f8231ce Add README file to project

821bcf5 peak_sorter: add +x permission

40d5ad5 Add input table of peaks above 4000m in the Alps

a3e9ea6 peak_sorter: add first version of peak sorter script

Example: compact view of current branch

$ git log --all --decorate --oneline --graph
* fc0b016 (origin/feature-dahu, feature-dahu) peak_sorter: display highest peak at end of script

* d29958d peak_sorter: add authors as comment to script

* 6c0d087 peak_sorter: improve code commenting

* 89d201f peak_sorter: add Dahu observation counts to output table

* 9da30be README: add more explanation about the added Dahu counts

* 58e6152 Add Dahu count table

| * f6ceaac (HEAD -> master, origin/master) peak_sorter: add authors to script

| * f3d8e22 peak_sorter: display name of highest peak when script completes

|/

* cfd30ce Add gitignore file to ignore script output

* f8231ce Add README file to project

| * 1c695d9 (origin/dev-jimmy, dev-jimmy) peak_sorter: add check that input table has the ALTITUDE and PEAK columns

| * ff85686 Ran script and added output

|/

* 821bcf5 peak_sorter: add +x permission

* 40d5ad5 Add input table of peaks above 4000m in the Alps

* a3e9ea6 peak_sorter: add first version of peak sorter script

Example: compact view of entire repo (all branches)

Su
p

p
le

m
e

n
ta

ry
m

at
e

ri
al

…

Adding custom shortcuts to Git

Some git commands can be long and painful to type, especially when you need them often!
But Git developers have you covered, allowing you to set custom aliases:

git config --global alias.<name of your alias> "command to associate to alias"

Example:

git config --global alias.adog "log --all --decorate --oneline --graph"

With the alias set, you can now simply type:

git adog

exercise 1
Your first commit

This exercise has helper slides

R
e

m
in

d
e

r…
Exercise 1 help: bash (shell) commands you may need during this course

cd <directory> Change into directory (enter directory).

cd .. Change to parent directory.

ls -l List content of current directory.

ls -la List content of current directory including hidden files.

pwd Print current working directory.

cp <file> <dest dir> Copy a file to directory “dest dir”.

mv <file> <new name> Rename a file to <new name>.

mv <file> <directory> Move a file to a different directory.

cat <file> Print a file to the terminal.

less <file> Show the content of a file (type “q” to exit).

vim <file> Open a file with the “vim” text editor.

nano <file> Open a file with the “nano” text editor.

Git concepts
commits, the HEAD pointer and the git index

Git commits
Git’s immutable, atomic, units of change

Introducing SHA-1

 SHA-1 stands for Secure Hashing Algorithm 1.

 Turns any binary input into an (almost*) unique 40 character hexadecimal hash/checksum value.
hexadecimal = base 16 number (0-9 + a-f)

e83c5163316f89bfbde7d9ab23ca2e25604af290

 Important: for a given input, SHA-1 always computes the exact same and (almost*) unique hash.

 Example: running "This is a test" through the SHA-1 algorithm, will always produce the hash
shown below:

echo "This is a test" | openssl sha1

3c1bb0cd5d67dddc02fae50bf56d3a3a4cbc7204

* as of Jan 2020, SHA-1 collisions can be created for 45'000 USD worth of CPU time.

Commits: Git's atomic, immutable, units of change

 A commit is the smallest unit of change in a Git repository.

 A commit is the only way to enter a change into a Git repository.
(enforces accountability as you cannot have untraceable modifications)

 Each commit has an associated author, committer, commit message and date.
(enforces documentation)

Author: Mad Hatter
Committer: Alice
Commit msg: Fix bug in class CheshireCat()
Date: 24.02.2020 10:43
Parent:

Tree: 57dc232

Content of a commit

815de0aff2e7b3a6ab90e967102b9745594be7e3SHA-1

commit ID

 Commits contain a reference to their parent commit.

* Tree = reference to the content of all files at a given time point.

 Each commit is uniquely identified by a commit ID: a SHA-1 hash/checksum computed on its metadata

 Commits are lightweight: they do not contain the tracked files’ data, only a reference to the data.
(a tree* object that represents the content of the Git index at the time the commit was made).

e5d56fa

Su
p

p
le

m
e

n
ta

ry
m

at
e

ri
al

…
 Commits contain a reference to the top “Tree object” – a table linking file names and

hashes of the Git index at the time the commit was made. This is how Git can retrieve the state
of every file at a given commit.

 Commits point to their direct parent – forming a DAG (directed acyclic graph) where no
commit can be modified without altering all of its descendants.

Author: Mad Hatter
Committer: Alice
Commit msg: Fix bug in function foo()
Date: 24.02.2020 10:43
Parent:

Tree: 57dc232

815de0acommit

main.py

fun.py

README.md

LICENSE.txt

src/

f5e333d blob

tree
(src/ directory)

b028233

dd598fe

ba2906d

38405c6

57dc232Top tree (root directory)

38405c6

blob

blob

blob

Tree object
Table linking file/subdirectory names to hashes
of the content of files (blobs). The “top tree” is

the root directory of the git repo.

45d56fa

Top tree

45d56facommit

Author: …
Committer: …
Commit msg: …
Date: …
Parent:

Tree: 28ad171

28ad171

fe3306a

fe3306aroot commit

Author: …
Committer: …
Commit msg: …
Date: …
Parent: none
Tree:

Top tree bd654b1

bd654b1

If two commits have the same ID,
their content is identical !

If two commits have the same ID,
their entire history is identical !

 Because of how their commit ID (SHA-1 hash) is
computed, commits are immutable: once a
commit is made, it cannot be modified without
its commit ID being modified too - which would
then make it a different commit !

 Modifying a commit will modify all of its
descendants. It creates a completely new
history of the Git repo.

 This ensures the integrity of a Git repository’s
history, something that is important due to the
distributed nature of Git. It can be seen as a
sort of blockchain.

A

B

C

0f1c3bc

b1241f5

ae7c31a

57dc232

ba08242

D

E

F c3738a7

A

G

C'

0f1c3bc

f454df5

34e7e13

987fd34

023ee33

D'

E'

F' ae06ff2

Small
change in
commit

Su
p

p
le

m
e

n
ta

ry
m

at
e

ri
al

…

As counter-intuitive as
it may sound, Git stores
a complete copy of
each file version. Not
just a diff.

What ??

Yes! It may not be space
efficient, but it’s fast :-)

--- version2 diff

+++ version3 diff

+ Yes! It may not be space
+ efficient, but it’s + fast :-)

As counter-intuitive as
it may sound, git stores
a complete copy of
each file version. Not
just a diff.

--- version1 diff

+++ version2 diff

+ What ??

version1

 Git stores a complete version of each file’s version*.

 Optimized for speed rather than disk space
preservation.

 Sub-optimal for tracking large files, as they will
quickly inflate the size of the .git repo.

Git versioning

A

B

C

most VCS versioning

What ??

Yes! It may not be space
efficient, but it’s fast :-)

What ??

As counter-intuitive as
it may sound, Git stores
a complete copy of
each file version. Not
just a diff.

As counter-intuitive as
it may sound, Git stores
a complete copy of
each file version. Not
just a diff.

As counter-intuitive as
it may sound, Git stores
a complete copy of
each file version. Not
just a diff.

version2

version1

version3

SHA1 – e78bf23…

SHA1 – 8fb24d3…

SHA1 – 27da79b…

Git versioning

* At least for a while, at some point Git also stores things as diffs – see "packfiles".

Su
p

p
le

m
e

n
ta

ry
m

at
e

ri
al

…
Git packfiles: compressing old history

• Differences between similar files are stored as diffs.

• Multiple files are compressed into a single “packfile” (.pack extension).

• Each packfile has an associated packfile index (.idx extention), that
associates filenames to blobs.

 For older commits, Git uses a few tricks to decrease disk space usage:

the HEAD pointer
The tip of your current branch

HEAD: a pointer to the most recent commit on the current branch.

HEAD pointer branch nameCommit ID (SHA1 hash)

Looking at the output of git log , we see a HEAD -> label: this shows the position of the HEAD pointer.

HEAD: a pointer to the currently checked-out branch/commit

Another way to look at it, is that HEAD always points to the parent of your next commit.

 HEAD is – most of the time – a pointer to the latest commit on your current branch.
Sometimes it's also described as a pointer to the current branch – which is itself a pointer to the latest commit on the branch.

 When a new commit is added, HEAD is automatically moved by Git to point to that new commit.

devel

HEADmaster

devel

HEADmaster

git commit git switch devel

develHEAD

master

Next commit

Next commit

Su
p

p
le

m
e

n
ta

ry
m

at
e

ri
al

…
Relative references to commits

Ref~X refers to the Xth generation before the commit: ~1 = parent, ~2 = grand-parent, etc.
Ref~ is a shortcut for Ref~1

 Using ~ and ^ symbols, Git allows to refer to a commit by its position relative to another

commit, rather than by its absolute hash.

 Ref can be any reference, such as HEAD, a commit hash, a branch name, or even another Ref.

Ref^X refers to the Xth direct parent of the HEAD commit (but most commits have only a single parent).
Ref^ is a shortcut for Ref^1

HEAD

HEAD~ / HEAD~1 / HEAD^ / HEAD^1

HEAD~2

HEAD~3 / 57d33a1~2 / 23b11a7~3

HEAD^2

HEAD~2

HEAD~3

HEAD^1

HEAD^2~1

HEAD^2~2

HEAD

Relative to another Ref17dc23c

ba08242

c3738a7

57d33a1

23b11a7

Relative to an absolute hash

the Git index
(staging area)

A preview of your next commit

.git [local git database]working directory

Committing new content: a two-step process…
 Any new content to be committed must first be added to the git index, or staging area. This process is

referred to as staging. The objective of this 2-step procedure is to help create “well defined” commits

 New commit = snapshot of the Git index. The Git index can be thought of as a sort of “virtual stage”
where the content of the next commit is prepared.

 Staged files remain staged, unless removed or overwritten by a newer version.

 When files are added to the git index (staged), their content is already copied to the git database.

git add c1

README.md

script.py git commit

README.md

script.py

test.py

README.md

script.py

test.py
test.py

some_notes.py

git index = content of your next commit.
commit = snapshot of the git index at a given time.

This file is not added (untracked),
because we don’t want it in our commit.

working tree
actual files on disk

Committed
content

git index
"staging area"

.git, local git databaseworking directory

README.md

c1 README.md

README.md

$ git add README.md

$ git commit --message "c1"

Command lines

working tree
actual files on disk

Committed
content

git index
"staging area"

.git, local git databaseworking directory

README.md

script.py

c1 README.md

c2 README.md

script.py

README.md

script.py

$ git add script.py

$ git commit --message "c2"

Command lines

working tree
actual files on disk

Committed
content

git index
"staging area"

.git, local git databaseworking directory

README.md

script.py [version 2]

c1

c2

private_tests.py

README.md

output.txt

README.md

script.py

README.md

script.py

output.txt

$ git add --all

$ git commit --message "c3"

Command lines

private_tests.py
c3

README.md

script.py [version 2]

private_tests.py

output.txt

[version 2]

working tree
actual files on disk

Committed
content

git index
"staging area"

.git, local git databaseworking directory

README.md

script.py [version 2]

c1

c2

private_tests.py

README.md

output.txt

README.md

script.py

c4
README.md

script.py [version 2]

README.md

script.py [version 2]

$ git rm output.txt

$ git rm --cached private_tests.py

$ git commit --message "c4"

Command lines

c3
README.md

script.py [version 2]

private_tests.py

output.txt
output.txt

private_tests.py

working tree
actual files on disk

Committed
content

git index
"staging area"

.git, local git databaseworking directory

README.md

script.py [version 2]

c1

c2

private_tests.py

README.md

README.md

script.py

c4
README.md

script.py [version 2]

README.md

script.py [version 2]

$ git checkout c3 output.txt

Command lines

c3
README.md

script.py [version 2]

private_tests.py

output.txt
output.txt output.txt

File remains
available in the
Git database

Adding content to the index (staging content)

git add <file(s) or directory(ies)> # Stages selected files/directories.
git add -u/--update # Stages all already tracked files, but ignore untracked files.
git add -A/--all # Stages all files/directories in the working directory (except

ignored files). Also stages file deletions.
git add . # Stages entire content of working directory, except file deletions.

git add <file/directory> # add the selected file/directory to the git index.

 Adds the file content to the Git index (“stages” a file).

 By default, the entire content of a file is added.
(adding only part of a file is possible with --edit or --patch options)

 Each time a file is modified, it must be added again so that the new version of the
file gets added to the git index.

 Useful git add options

Removing content from the index

 git mv: rename and/or move files both in the working tree and the index.

git mv <file> <new location/new name>

git reset HEAD <file> # remove newly staged content of specific file.
git reset HEAD # remove all newly staged content.

 git restore --staged / git reset HEAD: remove newly staged content from the index.

work dir. git index

xxxxxxx
xxxxxxx

xxxxxxx

xxxxxxx
xxxxxxx

xxxxxxx

old_name

new_name

old_name

new_name

git rm --cached <file> # remove file from index only.
git rm <file> # remove file from both index and working tree.

 git rm: remove entire files from the index and the working tree.

With no --cached option => deletes file on disk !

git restore --staged <file> # remove newly staged content of specific file.

Note: this is a specific use of the reset command, which has a wider scope.

R
e

m
in

d
e

r…

git status

How do I know which files are staged? use git status!

$ git status

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

modified: LICENSE.txt

modified: README.md

Changes not staged for commit:

(use "git add <file>..." to update what will be committed)

(use "git checkout -- <file>..." to discard changes in working

directory)

modified: README.md

Untracked files:

(use "git add <file>..." to include in what will be committed)

untracked_file.txt

Green = new content in this file
has been staged and will be part

of the next commit.

Red = this file contains new content,
but it is not staged and will not be

part of the next commit.

tracked
files.

untracked
files.

 Show differences between two states of the git repo.

git diff

git diff <file> # show diff only for a specific file

git diff --cached

git diff <commit 1 (older)> <commit 2 (newer)>

Committed
content

git index
"staging area"

working tree
actual files on disk

git diff

git diff

--cached

B

C

D

git diff <A> <D>
A

git diff <C>

How do I know which changes are staged? use git diff!

$ git diff
diff --git a/README.md b/README.md

index f5e333d..844d178 100644

--- a/README.md

+++ b/README.md

@@ -1,2 +1,3 @@

Project description:

-This is a test

+This is a demo project

+and it's pretty useless

Example:

Su
p

p
le

m
e

n
ta

ry
m

at
e

ri
al

…
Shortcuts: add + commit in a single command

 Stage + commit all changes in the specified files:

git commit -m "log message" <file to commit>

 Stage all changes in tracked files and commit them.
This will not commit untracked files (unlike git add --all that also adds untracked files).

git commit --all --message "log message"

git commit -am "log message" # short options version.

$ git commit -m "README: updates project description" README.md

Is the same as:

$ git add README.md

$ git commit –m "README: updates project description"

Example

This only works for files
that are already tracked.

 Stage all changes in tracked files (does not add untracked files).

git add -u

Git branches
run multiple lines of development

new-feature

Why branches? An example of a data quality-control pipeline project

 Branches are a great way to isolate
new changes you are working on from
the main line of development.

Main development line of project. This
is the version of the data quality-control
pipeline used in production.

main/master

Branch where you work
on a new feature

Version of code
used in production

Pre-production version of the
data quality-control pipeline.

develop

bob-test

Branch where your colleague Bob
is “just testing stuff…” (don’t worry,
it’s not on the production branch!)

The master/main branch is no special branch. It is simply the default name given to the branch
created when initializing a new repo [git init]. It has become a convention to use this branch as
the stable version of a project.

main or master ?
Since October 2020, repositories created on GitHub use main instead of master as their default branch (because
“master” carries a references to slavery). It is likely that at some point Git will also adopt this convention.

What are branches?

 A branch is just a pointer (to a commit).

 A branch is very lightweight (41 bytes).

 By convention, the master/main branch is the branch representing
the stable version of your work.

 Git is designed to encourage branching: branches are “cheap” to
create (use little disk space), and switching between them is fast.

The master/main branch

Spaces and some characters such as ,~^:?*[]\ are not allowed in branch names. It is strongly

recommended to stick to lowercase letters, numbers and the “dash” character [–].

Illegal characters within branch names

main/master

new-feature

bug-fix

Example of branched workflow: adding a new feature to an application and fixing a bug

3. Bug alert! (problem discovered in
production code, must be fixed asap)

Create new, dedicated, branch for the fix.

4. After testing,
“merge” the bug-fix
into the main branch

1. Create a new
branch to work on

a new feature

2. Do some work on
the new feature

(commits are added)

Version of the code
used in production

main (or master)
HEAD

main

new-feature

bug-fix
HEAD

This commit
contains the
bug fix.

new-feature

main

HEAD
new-feature

main
bug-fix

The bug fix
is now in
production.

HEAD

5. The bug-fix branch
can now be deleted.

6. Switch back to
“new-feature” branch

to continue work.

For now the new branch points
to the same commit as “main”.

main
new-feature HEAD

main

new-feature

Branch where you work
on a new feature.

HEAD

Creating new branches

git checkout -b <branch name>

master

HEAD

a b c

master

dev

HEAD

a b c

master

dev
HEAD

a b c

git branch dev

git switch -c dev

git switch -c <branch name>

git switch dev

git checkout dev

or

The -c option is to create and switch
to the new branch immediately.

The git switch command was introduced in Git version 2.23 as an alternatively/replacement to git checkout
when switching branches. This is because the checkout command already has other uses (e.g. to revert files to a
given version), and it was deemed confusing that a same command would have multiple usages.

checkout vs. switch

git branch <branch name>Create a new branch:

Create a new branch and switch to it:

Same as above, for older Git versions:

List branches and identify the currently checkout-out branch

git branch

git branch -a

List local branches

List local and remote branches

$ git branch

devel

* main

new-feature

$ git branch -a

devel

* main

new-feature

remotes/origin/main

remotes/origin/devel

The * denotes the currently
checkout-out (active) branch.
Generally it is also displayed in green.

Examples

Remote branches (to be precise, pointers to
remote branches) are shown in red and are
named remotes/<remote name>/<branch name>

As a handy alternative, you can also run the “git adog” command (git log --all --decorate --oneline --graph) that
will show all branches. The currently active branch as the HEAD pointing to it.

git merge
get branches back together

Branch merging
 Merge: incorporate changes from the specified branch into the currently active (checked-out) branch.

git merge feature

git merge <branch to merge into the current branch>

a

b

c

d

e

f

g

h main
feature

HEAD

Before running the command, make sure that the branch into which the
changes should be merged is the currently active branch.
If not, use git switch <branch> to checkout the correct branch.

feature

a

b

c

d

e

f

g

h

main

HEAD feature

a

b

c

d

e

f

g

h

main HEAD

git switch master

Example: integrate changes made on the branch feature into the branch main.

57dc232

ba08242

c3738a7

57dc232

ba08242

c3738a7

The active branch is “master”.
We can now merge “feature”
into “master”.

My active branch is
“feature”, so I need to
switch to “master”

Merging has not made any
changes to my commit history.
All my commits remain the
same (no change in hash).

At this point, the "feature"
branch could be deleted.
git branch –d feature

Two types of merges

Fast-forward merge

feature

a

b

c

d

e

f

g

h

a

b

c

d

e

f

g

h main *
feature

 3-way merge: when branches have diverged. This introduces an extra “merge commit”.

git merge feature

 Guaranteed to be conflict free.

main *

3-way merge (non-fast-forward)

* main feature

a

b

c

d

e

f

g

h
feature

a

b

c

d

e

f

g

h

i main *

 Creates an additional “merge commit” (has 2 parents).
 Conflicts may occur.

git merge feature

Additional “merge”
commit is created.

* denotes the currently active (checkout-out) branch.

The branch that is being merged (here feature) is rooted on the latest commit of the branch that it is being merged into (here main).

 Fast-forward merge: when branches have not diverged

The common ancestor of the 2 branches is not the last commit of the branch we merge into (here main).

Common
ancestor

Conflicts in 3-way merges (non fast-forward)

* main dev-alice

a

b

c

d

e

f

g

h

Common
ancestor

If a same file is modified at (or around) the same place in the two branches being merged, Git cannot decide
which version to keep. There is a conflict, and you need to manually resolve it.

Tea pot quality-control pipeline

Check and approve tea pots for use in

unbirthday parties.

Authors: Mad Hatter, Alice

Date modified: 2022 Oct 11

Step 1: physical integrity check

* Check exterior for cracks and uneven

painting.

* Check for mice inside of pot.

Step 2: tea-brewing integration test

* Brew tea for 7 min.

* Add 2 cubes of sugar.

* Probe tea.

* Make sure we still have no idea why

a raven is like a writing desk.

Tea pot quality-control pipeline

Check and approve tea pots for use in

unbirthday parties.

Authors: Mad Hatter, Red Queen

Date modified: 2022 Oct 10

Step 1: physical integrity check

* Check exterior for cracks and uneven

painting.

* Check for mice inside of pot.

* Verify the Mad Hatter is on time.

Step 2: tea-brewing integration test

* Brew tea for 7 min.

* Add 2 cubes of sugar.

* Probe tea.

README.md version of main branch. README.md version of dev-alice branch.

$ git merge dev-alice

Auto-merging README.md

CONFLICT (content): Merge conflict in README.md

Automatic merge failed; fix conflicts and then commit the result.

File with conflicts that need to be manually solved.

Let’s merge feature into main…

Story background: the Red Queen has
just merged changes from her branch
“dev-redqueen” into “main”.
Now Alice wants to merge her branch
“dev-alice” into “main”.

dev-redqueen

4. Stage the conflict-resolved file(s).
5. Commit

Resolving conflicts

Tea pot quality-control pipeline

Check and approve tea pots for use in

unbirthday parties.

<<<<<<< HEAD

Authors: Mad Hatter, Red Queen

Date modified: 2022 Oct 10

=======

Authors: Mad Hatter, Alice

Date modified: 2022 Oct 11

>>>>>>> dev-alice

Step 1: physical integrity check

* Check for mice inside of pot.

* Verify the Mad Hatter is on time.

Step 2: tea-brewing integration test

* Brew tea for 7 min.

* Add 2 cubes of sugar.

* Probe tea.

* Make sure we still have no idea why a

raven is like a writing desk.

Tea pot quality-control pipeline

Check and approve tea pots for use in

unbirthday parties.

Authors: Mad Hatter, Red Queen, Alice

Date modified: 2022 Oct 11

Step 1: physical integrity check

* Check for mice inside of pot.

* Verify the Mad Hatter is on time.

Step 2: tea-brewing integration test

* Brew tea for 7 min.

* Add 2 cubes of sugar.

* Probe tea.

* Make sure we still have no idea why a

raven is like a writing desk.

$ git merge dev-alice
Auto-merging README.md

CONFLICT (content): Merge conflict in README.md

Automatic merge failed; fix conflicts and then commit the result.

File with conflicts
1. Open the conflicting files in the text editor of your choice.

2. Look for the text between <<<<<<< and >>>>>>> .
There can be more than one of such sections, if there is more than one conflict in the file.

 The text between <<<<<<< and ======= corresponds to the version of the current branch (branch into which you merge).
 The text between ======= and >>>>>>> corresponds to the version from the branch you from which you insert changes.

3. Manually edits
the file(s)…Version from the current

branch (here main).

Version from branch being
merged into the current
branch (here dev-alice).

Note: there is no conflict
for these 2 lines, because

the edits were made at
different locations in the

file. Git is able to auto-
merge such changes.

$ git add README.md

$ git commit

[main a317d38] Merge branch ‘dev-alice'

Hash of the added
“merge” commit.

An editor will open with a pre-
set commit message. You can
accept it as is or modify it.

Resolving conflicts: if you get lost…

$ git status

On branch main

You have unmerged paths.

(fix conflicts and run "git commit")

(use "git merge --abort" to abort the merge)

Unmerged paths:

(use "git add <file>..." to mark resolution)

both modified: README.md

$ git status

On branch main

All conflicts fixed but you are still merging.

(use "git commit" to conclude merge)

Changes to be committed:

modified: README.md

 If you are lost at some point, you can run git status and it will give you some hints and commands.

 A merge can be aborted at anytime with

 Completed merges can be reverted (with the git reset commands – see the “git advanced” slides).

git merge --abort

Running git status before
conflicts are resolved in the file.

Running git status after
conflicts are resolved in the file
and the file was staged.

Examples

Git tells you what to do and
reminds you of commands.

Git tells you what to do and
reminds you of commands.

Su
p

p
le

m
e

n
ta

ry
m

at
e

ri
al

…
What’s in a merge commit ?

$ git show HEAD

commit 10fa3ad505821b0ea628b811143af47343a4d8dc (HEAD -> main)

Merge: 7446b3e b4fb462

Author: Red Queen <off.with.their.heads@wonder.org>

Date: Tue Oct 11 15:16:39 2022 +0200

Merge branch 'dev-redqueen'

$ git show HEAD

commit a317d38448dae4e6bd9b4862dcaccf4e416cc46c (HEAD -> main)

Merge: 10fa3ad 7999c7c

Author: Alice <alice@redqueen.org>

Date: Tue Oct 11 15:27:35 2022 +0200

Merge branch 'dev-alice'

diff --cc README.md

index 647be0c,74edef5..3ce8aa7

--- a/README.md

+++ b/README.md

@@@ -1,8 -1,8 +1,8 @@@

Tea pot quality-control pipeline

Check and approve tea pots for use in unbirthday parties.

- Authors: Mad-Hatter, Red Queen

- Date modified: 2022 Oct 10

- Authors: Mad-Hatter, Alice

++Authors: Mad-Hatter, Red Queen, Alice

+ Date modified: 2022 Oct 11

Step 1: physical integrity check

* Check exterior for cracks and uneven

dev-alice

a

b

c

d

e

f

g

h

i main *merge commit.

If there was no conflict, the merge commit contains
nothing but the commit message (and other metdata).

If there was a conflict, the merge commit contains the
conflict resolution changes made to the conflicted file(s).

demo: branch merging
fast-forward and 3-way merge

Deleting branches
Branches that are merged and are not used anymore can (should) be deleted.

git branch -d <branch name>

git branch -D <branch name>

safe option: only lets you delete branches that are fully merged.

YOLO option: lets you delete any branch.

The 'bugfix' and 'old' branches are fully merged.

$ git branch -d bugfix

Deleted branch bugfix (was bd898dc)

$ git branch -d old

Deleted branch old (was 75d3fed)

Trying to delete a non-merged branch with -d will fail:

$ git branch –d new-feature

error: The branch 'testing' is not fully merged.

If you are sure you want to delete it, run 'git branch -D testing'.

Using -D will allow deletion of a non-merged branch:

$ git branch –D new-feature

Deleted branch new-feature (was f2a898b)

 Note: A currently active (checked-out) branch cannot be deleted.
You must switch to another branch before deleting it.

a

b

c

d

e

f

g

h

i main

bugfix

a

b

c

d

e

f

g

h

i main

new-feature

k

n

old

Example

Deleted a branch by mistake ?
This hash can be used to re-create it *:
git branch f2a898b

Commands from
“Example” box

Branch management: best practices

master

dev

feature
 Use branches to develop and tests new changes to your

code/scripts - don’t test directly on main/master.

 Don’t hesitate to create branches, they are “cheap” (they
don’t add any overhead to the git database).

 Delete branches that are no longer used.

 Don’t change the history on the main/master branch if your project is used by others.

exercise 2
The Git reference webpage

This exercise has helper slides

masterHEAD master fix HEAD

master

fix HEAD fixmasterHEAD

Exercise 2 help: workflow example

1. Create new branch “fix”
and switch to it.

3. Test new feature, then merge
branch “fix” into “master”.

2. Do some work,
add commits.

git rebase
make a linear history

git rebase: replay commits onto a different base

git rebase <branch to rebase on>

 git rebase allows to "move"/“re-root" a branch to a different base commit.

 Important: it must be executed when on the branch to rebase, not the branch you rebase on.

* devel master

$ git branch

* devel

master

$ git rebase master

Make sure you are on the
branch you want to rebase !

devel *

git rebase master

master

Example:

The branch you want to
rebase on.

Rebase will modify your commit ID values (history of the rebased branch).
It's best to only rebase commits that have never left your own computer.

b028233

38405c6

f5e333d

57dc232

git rebase: example
devel *

mastera b c g

d e

git rebase master

HEAD

f

git switch master

git merge devel

We can now fast-forward merge !
Guaranteed to be conflict free :-)

master *

a b c g d' e' f'

devel

HEAD

d' e'

devel *
HEAD

f'

a b c g master

Before starting: make sure you are on
the branch to rebase!

git branch

If not on devel: git switch devel

Resolving conflicts with rebase

 Rebase re-applies all commit to rebase sequentially: at each step there is a potential for conflict…

 To resolve conflicts, you will have to:

$ git rebase master

First, rewinding head to replay your work on top of it...

Applying: first commit on new branch

Using index info to reconstruct a base tree...

M new.txt

Falling back to patching base and 3-way merge...

Auto-merging new.txt

CONFLICT (content): Merge conflict in new.txt

error: Failed to merge in the changes.

Patch failed at 0001 first commit on new branch

Use 'git am --show-current-patch' to see the failed patch

Resolve all conflicts manually,

mark them as resolved with "git add/rm <conflicted_files>"

, then run "git rebase --continue".

You can instead skip this commit: run "git rebase --skip".

To abort and get back to the state before "git rebase",

run "git rebase --abort".

1. Edit the conflicting files, choose the parts
you want and remove all lines containing
<<<<<<<, ======= and >>>>>>>>.

2. Mark the files as resolved with
git add <file>

1. Continue the rebase with
git rebase --continue

1.
2.
3.

When a conflict arises, Git will provide guidance:

Branch reconciliation strategies when history has diverged: merge vs. rebase

* master devel

a

b

c

d

e

f

g

h

devel

a

b

c

d

e

f

g

h

i master *

merge (3-way merge)

+ Preserves history perfectly.
+ Potentials conflicts must be solved

only once.
- Creates an additional merge commit.
- Often leads to a "messy" history.

git merge devel

devel *

a

b

c

d

e

f’

g’

h’

master

git switch master

git merge devel

git switch devel

git rebase master

a

b

c

d

e

f’

g’

h’ master *
devel

rebase + fast-forward merge

+ Cleaner history = easier to read and navigate.
- Conflicts may have to be solved multiple times.
- Loss of branching history.
History of rebased branch is rewritten, not a
problem in general.

Spoiler-alert: the end result is the same, and have the same content.i h’

Additional “merge
branch devel” commit.

Su
p

p
le

m
e

n
ta

ry
m

at
e

ri
al

…
Ultimate history preservation: force the addition of a merge commit with --no-ff

If keeping an exact record of how the history of a Git repo came into existence is of prime importance,
some people like to add a merge commit even if a fast-forward merge is possible.

This is possible by adding the --no-ff option (“no fast-forward”) to git merge.

git merge --no-ff <branch to merge>

git merge --no-ff feature

feature

a

b

c

d

f

g

h

main * f

g

h

main *

a

b

c

d

i

The merge commit “ i ” is added for the
sole purpose of allowing us to reconstruct
the exact history of the repo: it tells us
that commits “f”, “g” and “h” were once
part of a different branch, which was then
merged into “main”.

a

b

c

d

f

g

h main *

git merge feature

With a regular fast-forward merge, the
history is cleaner. However, the
information that “f”, “g” and “h” were
once part of a branch “feature” is lost
(but in most cases this doesn’t matter).

$ git show 10fa3ad

commit 10fa3ad505821b0ea628b8

Merge: 7446b3e b4fb462

Author: Alice <alice@redqueen.org>

Date: Tue Oct 11 15:16:39 2022 +0200

Merge branch ‘feature'

Su
p

p
le

m
e

n
ta

ry
m

at
e

ri
al

…
Readability vs. history preservation tradeoff

Screenshots of two versions of a same repository (in the sense that it contains the exact same content
with mostly the same commits).

Here, history has been fully preserved, by
always using merges and forcing extra merge
commits (--no-ff) when needed.

Here, having a linear history has been prioritized
(better readability), by rebasing branches before

(fast-forward) merging them.

Su
p

p
le

m
e

n
ta

ry
m

at
e

ri
al

…
Never rebasing your changes
before merging can lead to a
hard to read history…

demo: branch rebase
feat. manual conflict resolution

git cherry-pick
the "copy/paste" for commits

Cherry-pick: merge a single commit into the current branch

git cherry-pick <commit to pick>

devel

* master a b c

d e

HEAD

f

ba0824c

d8405c6

devel

* master a b c e'

d e

HEAD

f

git cherry-pick ba0824c

 git cherry-pick allows to "copy" a single commit to the current branch.

The cherry-picked commit has the same content,
but a different hash.

Example:
"copy" a fix from one branch to another.

git restore / checkout
retrieving data from earlier commits

R
e

m
in

d
e

r…

git restore --staged <file name>

Un-stage file modifications (restore file in index)

work dir. git index

xxxxxxx
xxxxxxx

xxxxxxx

xxxxxxx
xxxxxxx

xxxxxxx

 Restores the content of a file in the Git index back
to the latest commit (HEAD commit).

 Does not modify files in the working directory.

Committed
content

xxxxxxx
xxxxxxx

git restore --staged README.md

Version of file in the
last commit (HEAD)

$ git status

On branch main

Changes to be committed:

(use "git restore --staged <file>..." to unstage)

modified: README.md

$ git status

On branch main

Changes not staged for commit:

(use "git add <file>..." to update what will be committed)

(use "git restore <file>..." to discard changes in working directory)

modified: README.md

$ git restore --staged README.md

Example: un-stage changes to README.md file.

The file is still modified in the working directory, but the changes are no longer staged.

Note: the restore command is available from Git >= 2.23

git checkout <commit reference> <file name>

$ git checkout ba08242 output.txt

$ git checkout HEAD~10 output.txt

$ git checkout v2.0.5 output.txt

Updated 1 path from 2a7fac8

$ git checkout devel-branch output.txt

Updated 1 path from e55fa6f

Examples: the <commit reference> can be e.g. a commit ID, a relative reference, a tag or a branch name.

Restore / checkout of individual files

Retrieving the content of a file from an earlier commit can be done with either:

git restore -s/--source <commit reference> <file name>

or

$ git restore -s ba08242 output.txt

$ git restore -s HEAD~10 output.txt

$ git restore -s v2.0.5 output.txt

$ git restore -s devel-branch output.txt

using a branch name, implicitly refers
to the latest commit on the branch.

A small difference between these two commands is that restore updates the file only in the working tree (i.e. the files in your working directory),
while checkout updates both the working tree and the index.

$ git checkout ad26560 README.md

Updated 1 path from e55fa6f

$ git status

Changes to be committed:

(use "git restore --staged <file>..." to unstage)

modified: README.md

$ git restore --source ad26560 README.md

$ git status

Changes not staged for commit:

(use "git restore <file>..." to discard changes

in working directory)

modified: README.md

Warning: these commands will overwrite
existing versions of the retrieved file in your
working directory. Make sure you don’t have
uncommitted changes you want to keep.

If no commit references is specified, the file is retrieved from the index.

Checkout of the entire repo state at an earlier commit

git checkout <commit reference>

$ git checkout ba08242

$ git checkout HEAD~10

$ git checkout v2.0.5

Examples:

 Checking out a commit will restore both the working tree and the index to the exact state of
the specified commit.

 It will also move the HEAD pointer to that commit.

$ git checkout ba08242

Note: checking out 'ba08242'.

You are in 'detached HEAD' state. You can look

around, make experimental changes and commit them,

and you can discard any commits you make in this

state without impacting any branches by performing

another checkout.

 After a checkout, you enter a "detached HEAD"
state….

 To get back to a “normal” state you should go
back to a regular branch:

git switch <branch> or git checkout <branch>

$ git checkout ad26560
error: Your local changes to the following files would be

overwritten by checkout:

README.md

Please commit your changes or stash them before you switch branches

Make sure to have a clean working tree before doing a checkout!

exercise 3
The crazy peak sorter script

This exercise has helper slides

Exercise 3 help: history of the peak-sorter repo feature-dahu

master

1c695d9

dev-jimmy

HEAD

This slide shows the history of the repo for exercise 3, both as the command line output and
as a schematic representation (on the right).

This can help you understand the command line representation of a repo’s history.

Working with remotes
Linking your local repo with an online server

What is a “remote” ?
A remote is a copy of a Git repository that is stored on a server (i.e. online).

Local copy of repo

Remotes are very useful, as they allow you to:

 Backup/copy of your work.

 Collaborate and synchronize your repo with other
team members.

 Distribute your work – i.e. let other people clone
your repo (e.g. like the repo of this course).

Remotes are generally hosted on dedicated servers/services, such as GitHub,
GitLab (either gitlab.com or a self-hosted instance), BitBucket, ...

git push

git fetch

Local copy of repo

Remote copy of repo

Add a remote to an existing project (or update a remote’s URL)

Add a new remote: git remote add <remote name> <remote url>

Add a new remote (named origin) to the local repo:

$ git remote add origin https://github.com/sibgit/test.git

Update the URL of the existing origin remote.

In this example, the remote was moved GitLab.

$ git remote set-url origin https://gitlab.sib.swiss/sibgit/test.git

git remote set-url <remote name> <remote url>

Examples

Change URL of remote:

Note: by convention, the <remote name> is generally set to origin .

 Case 1: your local repo was cloned from a remote – nothing to do (the remote was automatically added by git).

 Case 2: your local repo was created independently from the remote – it must be linked to it.

https://github.com/sibgit/test.git

Remote

dev

git push -u origin main

git remote add origin

https:/github.com/...

main origin/main

dev origin/dev

1. She creates a remote on GitHub and links it to her local repo using git remote add .
2. She pushes her branch main to the remote using git push -u origin main (the branch has no upstream,

so the -u/--set-upstream option must be used).
3. She pushes her branch dev to the remote (important: you must switch-to/checkout the branch before pushing).

Alice’s computer

Example – part 1: creating a new remote and pushing new branches

git push -u origin dev

main

git switch dev

Alice has a Git repo with 2 branches: main and dev. She now wants to store her work on GitHub, to collaborate and have a backup.

devorigin/devdev origin/dev dev

main origin/main

Bob has now joined the team to work with Alice.

1. He clones the repo from GitHub (note: at this point, Bob has no local dev branch - but he has a pointer to origin/dev).

2. Bob checks-out the dev branch to work on it. Because there is already a remote branch origin/dev present, Git automatically
creates a new local branch dev with origin/dev as upstream (no need add the --create/-c option of git switch).

Alice’s computer Remote Bob’s computer

Example – part 2: cloning a remote and checking-out branches

git clone https:/github.com/…

main

git switch dev

main origin/main

dev*

origin/dev dev

main origin/main

1. Alice added 2 new commits to dev. She then pushes her changes to the remote using git push (since her dev branch
already has an upstream, there is no need to add the –u/--set-upstream option this time).

2. To get Alice’s updates from the remote, Bob runs git pull - which is a combination of git fetch + git merge .
Important: git fetch download all new changes/updates from the remote, but does not modify your local branches.

Alice’s computer Remote Bob’s computer

Example – part 3: pushing and pulling changes

main

git push

git fetch

devorigin/dev

main origin/main

git merge
git pull

git pull

To merge, you can also
simply run git pull

instead of git merge.

dev

main

dev*

dev*

origin/dev

main origin/main

Both Alice and Bob have now added some commits to their local dev branch. As a result, the history of their branches has diverged.

1. Alice pushes her changes to the remote with git push , as usual.

2. When Bob tries to git push, his changes are rejected because the history between his local dev branch and the remote have diverged!

Alice’s computer Remote Bob’s computer

Example – part 4: reconciliation of a diverging history

git push git push

! [rejected] dev -> dev (non-fast-forward)

error: failed to push some refs to

'github.com:alice/test-repo.git'

origin/dev

main origin/main

dev*

origin/devdev

main

dev*

main origin/main

In order to be able to push his changes to the remote, Bob must first reconcile his local dev branch with the remote…

1. Bob starts by performing a git fetch , just to get the new commits from the remote and see how his local branch
diverges from the remote (important: this operation does not impact/update his local dev branch).

Alice’s computer Remote Bob’s computer

origin/dev

main origin/main

git fetch

Example – part 4: reconciliation of a diverging history (continued)

Example – part 4: reconciliation of a diverging history (continued)

dev*

origin/dev

git fetch

git merge origin/dev

This is equivalent to:

git fetch

git rebase origin/dev

This is equivalent to:

dev* origin/dev

dev* origin/dev

Option 1 - reconciliation using merge.

Option 2 - reconciliation using rebase.

This introduces a merge commit.

dev* origin/dev

Option 3 – overwrite the remote
with git push --force

This will permanently
delete data on the
remote !!

git push

--force

To reconcile his local dev branch with the remote, Bob must decide to either
perform a merge or a rebase:

If you don’t remember the --no-rebase and --rebase
options of git pull , simply fetch and then merge or
rebase from/on origin/dev .

dev* origin/dev

dev

main

dev*

main origin/main

Bob decides to merge without rebase and runs git pull --no-rebase .

Note: depending on the version of Git, the default behavior of git pull is different:
• Newer versions default to git pull --ff-only (i.e. raise an error if a fast-forward

merge is not possible)
• Older versions default to git pull --no-rebase (i.e. the automatically merge)

Alice’s computer Remote Bob’s computer

Example – part 4: reconciliation of a diverging history (continued)

origin/dev

main origin/main

git pull --no-rebase

git config pull.rebase false # merge

git config pull.rebase true # rebase

git config pull.ff only # fast-forward only

The default behavior can be modified in the git config.

dev* origin/dev

devdev*

main origin/main

Finally, Bob can now git push his changes to the remote - now there are no more conflicts.

Alice can then git pull them.

Alice’s computer Remote Bob’s computer

Example – part 4: reconciliation of a diverging history (the end!)

origin/dev

git pushgit pull

dev* origin/dev

main origin/main

dev

main

dev

feature

dev* origin/dev dev* origin/dev

main origin/main

Alice’s computer Remote Bob’s computer

Example – part 5: deleting branches on the remote

main origin/main

git fetch --prune

We are now at a later point in the development... Alice has just completed a new feature on her branch feature, and merged it into dev.
She now wants to delete the feature branch both locally and on the remote.

1. Alice deletes her local branch with git branch -d feature .
2. Alice deletes the feature branch on the remote with git push origin --delete feature .
3. Bob runs git fetch , but this does not delete references to remote branches, even if they no longer exist on the remote.
4. To delete his local reference to the remote feature branch (origin/feature), Bob has to use git fetch --prune .

feature origin/feature

dev* origin/dev

origin/feature

main

git push origin --delete feature

git branch -d feature git fetch

GitHub
collaborate and share your work

GitHub – an online home for your Git repos

 GitHub [github.com] is a hosting platform for Git repositories.

 73+ million users, 200+ million repositories (as of 2022).

 Very popular to share/distribute open source software.

 Allows to host public (anybody can access) and private (restricted access) repos.

 Hosting of projects is free, with some paid features.

 Popular alternatives include:

 GitLab [gitlab.com], which can also be installed as a local instance: e.g.
gitlab.sib.swiss.

 BitBucket [bitbucket.org].

https://github.com/
https://about.gitlab.com/
https://bitbucket.org/

Creating a new project on GitHub

To create a new repo, click on

Either on the welcome screen at https://github.com (after signing-in)…

… or click on your user icon (top
right), then Your profile …

… and the Repositories tab.

https://github.com/

Enter a name for your new repository.

Project description.

Select whether your repo should be:

• Public - anyone can access it (read from it).
• Private - only people you authorize.

Note: even if a repo is public, only authorized members
can push changes to it.

Pre-fill the repository with some files (don’t do this if

you already have a local repo you want to push):

• README – A text file that is displayed on the
homepage of your repo (with markdown rendering).

• A .gitignore file selected from a list of templates.

• A license file selected from a set of standard licenses
(e.g. GPL, MIT, …).

Click Create repository.

The home page of an empty repository provides instructions to get started…

Add remote to your local repo.
Push a branch (here “main”) to the remote.

Same commands as above…

When at least 1 file is present in the repo, the home page of your Git repo looks like this:

Code tab: the “home”
page of your repo.

Branch you are
currently viewing

List of files present
in the repo.

If you have a
README.md file, it

is displayed here
(with markdown

rendering). To copy the repo’s URL.

Su
p

p
le

m
e

n
ta

ry
m

at
e

ri
al

…
Cloning a repo: HTTPS vs. SSH

When cloning (or adding a remote) via:

 HTTPS, you will need to provide a personal access token (PAT) as
authentication credential.

• If the repo is public, credentials are only needed to push data
to the remote (not to pull).

• Your local Git repo will in principle store the login credentials,
so you need to provide them only once.

• Instructions on how to generate a PAT can be found in the
helper slides of exercise 4.

 SSH, you will need to add your public SSH key to your GitHub
account.

$ git clone https://github.com/sibgit/test.git

Reminder: command to clone a repo (here via https)

HTTPS and SSH are two different network protocols that machines can use to communicate.

https://github.com/sibgit/test.git

GitHub Pull Requests (PR)

Pull Requests * (PR) are a way to ask someone to integrate your changes (i.e. merge your branch) into another branch.

 PRs perform a branch merge operation on the GitHub remote (rather than on your local copy).

 Typically, a PR is created to merge a feature branch into the main/master branch on the remote.

* On GitLab, pull requests are called Merge Requests (MR), but it’s the exact same thing.

Why use PRs instead of a local merge (and push)?

 The branch you want to merge into
(e.g. main/master) is protected **.

 Gives the opportunity to the repository
owner(s) to review changes before
merging them.

 Makes it easy to merge changes from a
forked *** repository. Example of protection rules.

** Protected branches are branches where push operations are limited to users with enough privileges.

*** A fork is a copy of an entire repository under a new ownership.

How to open a Pull Request on GitHub: step-by-step

1. On the project’s page on GitHub, go to the Pull requests tab.

2. Click on
New pull request.

Pull requests tab

Pending pull
requests will be

listed here…

3. Select the branches to merge:

Branch to
merge into

Branch to merge
(your contribution)

List of commits that will be merged
In this example, there are 2 commits on branch
“manta-dev” that will be merged into “master”.

Summary of changes introduced
by the pull request.

Green lines = new content.
Red lines = deleted content.

4. Click on Create pull request.

If there are conflicts, you probably need to
rebase your branch and resolve them.

5. Optionally, enter
a message for the

people that will
review your pull

request.

6. Submit your pull request by clicking
Create pull request.

The pull request is now created,
and awaiting approval from an

authorized person.
(e.g. the repo owner or a colleague)

Merging is blocked, because
someone has to approve your PR.

The reviewer of your PR will
then have a look at your changes
(the modifications introduced
with your commits) and approve
them or request changes.

Now that the pull request is approved, it can
be merged (either by the reviewer or by you)
by clicking Merge pull request.

Completed ! Optionally, you can delete your branch
on the remote (this will not delete it locally).

Repository settings (only available if you are the owner).

Here you can set diverse
settings concerning your
repository, e.g. :

• Invite collaborators.
• Setup branch protection.

Click here to
add a

collaborator

Other GitHub features (some of them)

“Home” of
your repo

(repo content) Issue tracker
Continuous integration
(automated testing)

Group issues and
PR by topics.

Add a wiki for
your project.

Setup automated security scanning
for your code (vulnerability check).

Statistics about your
repo’s activity.

exercise 4
The Awesome Animal Awareness Project

This exercise has helper slides

master

yeti-dev

yeti-dev-bob

master yeti-dev

yeti-dev-alice

master

yeti-dev

clone

push

clone

fetch
checkout

do work…

do work…

master yeti-dev

yeti-dev-alice

yeti-dev-bob

master yeti-dev

Exercise 4 help: branch – rebase – merge sequence

master yeti-dev

yeti-dev-alice

yeti-dev

master

yeti-dev-bob

master

yeti-dev

yeti-dev-alice

master

yeti-dev

pushmerge/rebase

yeti-dev

master

yeti-dev-bob

rebase

pull

In order to push data (commits) to GitHub, you will need a personal access token (PAT).

1. In your user profile (top right),
click on Settings.

2. In your Account settings,
click on Developer settings.

3. In Developer settings, click
on Personal access tokens.

Go to next page

Exercise 4 help: generating a “personal access token” on GitHub

Exercise 4 help: generating a “personal access token” on GitHub

4. Add a Note (description) to your token and select
the repo scope checkbox. The click Generate token.

5. Copy the personal access token to a safe locations
(for now maybe in a text file, but ideally in a password
manager). You will not be able to access it again later.

6. When you will push content to GitHub for the first
time in the project, you will be asked for your user
name and password. Instead of the password, enter
the personal access token you just created.

Thank you for attending this course

