E

Version control with Git — advanced topics Swiss Institute of

Bioinformatics

WWW.Sib.swiss

Robin Engler
Vassilios loannidis

Lausanne, 12-14.10.2022

Course outline

= Review / Refresher: quick review of basic commands.

= Rewriting history: interactive rebase, git reset and commit amending.
= Detached HEAD state explained.

"= The Git stash: Git’s “cut and paste” functionality.

= Git tags: l[abel important commits.

Optional Git extensions (these can be useful for specific applications).

= Git submodules: "symlink" Git repos.

= Git LFS: large file storage.

Course resources

Course home page: slides, exercises, exercise solutions (available at end of day),
command summary (cheat sheet), feedback.

Google doc: ask questions.

Questions: feel free to interrupt at anytime to ask questions,
or use the Google doc.

Course slides

= 3 categories of slides:

[Regular slide
[Red]

Supplementary
material
[B'UE]

Reminder slide
[Green]

Slide covered in detail during the course.

Material available for your interest, to read on your own.

Not formally covered in the course.
We are of course happy to discuss it with you if you have questions.

Material we assume you know.
Covered quickly during the course.

review / refresher

Git commands we assume you know

-
)
©
£
£
[
o

git

git

git

git
git

git

git
git
git
git

init / git clone

add <file>

restore --staged <file> /
git rm --cached <file>

rm <file>

commit -m “commit message”

branch <branch>

switch <branch>
checkout <branch>

switch -c¢ <branch>
checkout -b <branch>

HEAD =) devel |::>O
I

O
AN
O <& master
|

git log
git show
git status

$ git log

commit f6éceaac2cc74bd8cl52ellb9cl2ada725e06c8b9
Author: Alice alice@redqueen.org

Date: Wed Feb 19 14:13:30 2020 +0100

(HEAD -> master)

Add stripe color option to class Cheshire cat.

Date:

$ git show 89d201f

commit 89d201fd0leadocad99%9aldobcbdabaal78c92lect
Author: Alice <alice@redqueen.org>

Wed Feb 19 14:00:02 2020 +0100

Fix function so it now passes tests

diff --git a/script.sh b/script.sh

tests.

S git status

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

modified: LICENSE. txt

Changes not staged for commit:
(use "git add <file>..
(use "git checkout -- <file>..
directory)

modified: README . md

Untracked files:
(use "git add <file>..."

untracked;file.txt

." to update what will be committed) |
." to discard changes in working

to include in what will be committed)

on, from highest to lowest.

p)\

tail -nl | cut -£5)

= git log --all --decorate --oneline --graph

git log --all --decorate --oneline --graph
peak sorter: display highest peak at end of script
peak sorter: added authors as comment to script
peak sorter: improved code commenting
peak sorter: add Dahu observation counts to output table
README: add more explanation about the added Dahu counts

Add Dahu count table
peak sorter: added authors to script

peak sorter: display name of highest peak when script completes

Add gitignore file to ignore script output
Add README file to project
peak sorter: add check that input table has the ALTITUDE and PEAK columns

Ran script and added output

peak sorter: add +x permission
Add input table of peaks above 4000m in the Alps
peak sorter: add first version of peak sorter script

IDON'TALWAYS USE GIT LOG_

git config --global alias.adog "log --all --decorate ATLITIINT:
--oneline --graph" [T\ =ITITHETIL] .

Reminder...

[+4
Branch merging

= For merge operations, the branch into which one merges must be the currently active branch (* in the figures below).

= When the branch that is being merged (here devel) is rooted on the latest commit of the branch that it is being
merged into (here master), the merge is said to be fast-forward.

Fast-forward merge Non fast-forward merge
= Guaranteed to be conflict free. = Creates an additional “merge commit”.
= Conflicts may occur.
v devel
* Additional “merge”
'D @ devel ‘D € master / commit is created.
&) & (i) & master *
N (f) * masterp (e) (h) @ devel
(e) (h) <& devel
(e) & master * (e) @ @ @ @
§ = @ Vo —
o) © (P
G git merge devel O git merge devel @
k) O © &4
@ .
= © @ -
S . .
()
(a'd

[+4
Branch rebasing

= For rebase operations, the branch being rebased must be the
current branch (* in the figures below).

= Rebase operations re-write history: the ID of rebased
commits is modified (“ in the figures below).

= Branches can be rebased on other branches, or on an older
commit of themselves (interactive rebase).

(h’) éa devel *

master 5 (e) (h) <4 devel * (e) &amaster

ONO
© (O =

git rebase

(d)
©
(o) master ()
© ©

-
)
©
£
£
[
o

Cherry-picking

= “copy” changes introduced by a commit on
another commit.

* master) (e) (h) < devel *
d @
© (£ git cherry-pick
(b) % <g commit>
@)

* master 5

== ()=~~~)~
=@~

Working with remotes

git push Push (upload) changes on current branch to a remote.

)

git push -u origin <branch> When pushing a newly created branch to the remote for the 1t time. “-u” is short for “--set-upstream’

git fetch Retrieve (download) all changes from the remote.
git pull git fetch+git merge of current branch with its remote counterpart.
git clone Create a local copy of a remote repository.

git push git fetch

git push -u git p'lJ.ll

origin <branch>
% | | git clone

GitHub GitLab

-
)
©
£
£
[
o

Git Data Transport Commands

hztp://cateele.com

commit -a >
add (-u) :> commit :>

lworkspace\ index ro;:::;::ry

A
N

push

remote
repository

pull or rebase

-
]

diff HEAD

revert

compare

diff

-
)
©
£
£
[
o

rewriting history

power (and responsibility) at your fingertips
with interactive rebase and git reset

git commit --amend

Overwrite (re-write) the latest commit of a branch

Amending the latest commit of a branch

= Assume that we realize we made a mistake in a file, after a b1241f5 ‘ Addd a README.md file
new commit was made. [

® |n addition, there is also a typo in the commit message... 0flc3bc @ First commit to new repo

git add README.md

git commit -m “Fix typo in README”
-~ «— Symbolizes the “staged”

@ Fix typo in README f—_\ () corrected README.md file
|
I

(8) Addd a README file (8) Addd a README file
I I . .
@ First commit to new repo @ First commit to new repo

Possible but not ideal: git commit --amend -m “Add

23 New commit just to fix a typo ! a README file”

Cleaner solution
23 Typo still present in the second commit message ! ‘/

&/v 57dc232 ‘ Add a README file

Commit ID is modified ! l
0flc3bc CA) First commit to new repo

Re-writing the latest commit (amending)

To amend the latest commit of a branch:

1. Stage the changes you want to make to your commit, or, if you just want to modify
the commit message, don’t stage anything.

2. Runoneofthegit commit --amend commands as shown below:

= This will open an editor where you can modify the commit message interactively.

git commit —--amend

= This is to enter the new commit message directly in the command.

git commit --amend -m “new message”

= This is to keep the commit message unchanged (only edit the content of the commit).

git commit --amend --no-edit

demo: commit amending

interactive rebase

Interactive rebase: re-order, squash, and delete commits

Commit history of your new feature and how you wish it was.

commits

A 57d33ab | Add test for new feature
Merge
|

c3738a7 | New feature completed
I
& ba08242 | Committed test output file by
mistake.
Re-order

I
A 57dc232 | fix typo in function_1() !!
| and merge
. . with A
& ae7c3la | woopsie, forgot to test. Fixed

| bug in function_1()

b1241f5 | add function_2()

0fic3bc | add function_1()

de7c91e | New feature completed
and tested

b1241f3 | add function_2()

0fic3b7 | add function_1()

@_@_@

Standard vs. interactive rebase

Standard rebase
replay commits on top of
another base commit.

HEAD = (E) devel *
|

@ git rebase
master O master

HEAD = (E) devel *
|

Interactive rebase
same, but with more control

Sao s over how commits are replayed:
~ A
@ DTN = re-order
Se S e e
S~ S 0N = delete

= merge (squash)

>
\\\\\\\\\\ *\\ HEAD
\\‘:1§ A
~ G+ devel *
\\\\\\ I
~ \\\
G
m RS
~ l
]

git rebase
—-interactive

master
O

Interactive rebase: re-order, squash, and delete commits

— Parent of first commit in the rebase
git rebase --interactive/-i <commit X ref>

= Starting from the specified <commit X>, Git opens a text editor where you interactively
give instructions on how to modify the history of all descendent commits of X by:

* Re-ordering commits.
* Merging one or more commits together.
* Deleting commits.

= Then Git will rewind to <commit X>, and re-apply the descendant commits as instructed.

To rebase the last 3 commits (descendants of commit X),
these 2 commands will yield the same result:

57d33al | HEAD

Rebased commits
c3738a7 | HEAD~1 — = S git rebase -i 17dc23c «— Absolute reference

S to commit X

descendants of
commit X

ba08242 | HEAD~2

S git rebase —-i HEAD~3 <— Relative reference
$ to commit X

O-0-0-0

commit X— 17dc23c | HEAD~3

57d33ab | Add test for new feature Merge S git rebase -i 17dc23c or |$ git rebase -i HEAD~7
commits
1 opens the following in Git's default editor (e.g. vim)
c3738a7 | New feature completed & pick 0fle3be add function 1 ()
pick bl241f5 add function 2()

Reversed pick ae7c3la woopsie, forgot to test. Fixed bug in function 1 ()
order! pick 57dc232 fix typo in function 1() !!

pick ba08242 Committed test output file by mistake.

pick c3738a7 New feature completed

v pick 57d33ab Add test for new feature.

ba0s8242 | Committed test output file by | delete !
mistake.

57dc232 | fix typo in function_1() !!

Re-order # Commands:
and merge # p, pick <commit> = use commit
. # s, squash <commit> = use commit, but meld into previous commit
ae7c31a | woopsie, forgot to test. Fixed with A # £, fixup <commit> = like "squash", but discard log message
d, drop <commit> = remove commit

buglnfunCUOn_lo there are more commands.

b1241f5 | add function_2()

l manual editing of file.

0fic3bc | add function_1() £ ae7c3la woopsie, forgot to test. Fixed bug in function 1()
£ 57dc232 fix typo in function 1() !!

Commits are re-applied | pick £1241f5 add function 2 () B

in top to bottom order | d ba08242 Committed test output file by mistake.

17dc23c pick c3738a7 New feature completed

L A 57d33ab Add test for new feature

C pick 0flc3bc add function 1()

~-0-0-0-0-0-0-0

pick 0flc3bc
f ae7c3la
£ 57dc232
pick b1241f5
d ba08242
pick c3738a7
s 57d33ab

A\ 4

add function 1 ()

woopsie, forgot to test. Fixed bug in function_ 1()

fix typo in function 1() !!

add function 2 ()

Committed test output file by mistake.
New feature completed

Add test for new feature

Save and close to start rebasing (":wqg" or “:x” in vim).

For squashes, Git will open an editor so you can edit the commit message.

If there are any conflicts, you will ¢ vim <file with conflict> # manual conflict resolution

need to solve them manually. S git add <file(s) with conflict>
$ git rebase --continue

Rebase completed

& Rebase re-writes history -> Commit ID values are now different !

History after the rebase:
[
I

de7c91e@ New feature completed and tested

b1241f§ add function_2()
0flc3b7 i add function_1()

e
S
Q
e
©
(S
>
S
(1)
i
o
()
S
K
Q.
Q.
-
(Vs

Example of interactive rebase file (in full):

pick 0flc3bc add function 1 ()

£ ae7c31lc woopsie, forgot to test. Fixed bug in function_1()
£ 57dc233 fix typo in function_1() !!

pick bl241f5 add function 2 ()

d ba08242 Committed test output file by mistake.

pick c3738a7 New feature completed and tested

£ 57d33ab Well, there was still a bug and a typo.. now fixed

Rebase 17dc23c..0fl1lc3b2 onto 17dc23c

Parent commit (i.e. commit X)
Last descendent

Commands:
p, pick <commit> = use commit
r, reword <commit> = use commit, but edit the commit message
e, edit <commit> = use commit, but stop for amending
S, squash <commit> = use commit, but meld into previous commit
f, fixup <commit> = like "squash", but discard this commit's log message
x, exec <command> = run command (the rest of the line) using shell
break = stop here (continue rebase later with 'git rebase --continue')
d, drop <commit> = remove commit

These lines can be re-ordered; they are executed from top to bottom.
If you remove a line here THAT COMMIT WILL BE LOST.

However, if you remove everything, the rebase will be aborted.

S oS S S S S S S S S o e o o e o o e o
o
~

Note that empty commits are commented out

N\

A

Commands: either the 1-letter shortcut or
the full command name can be used.

/ Commits are re-applied in the order from
top to bottom.

squash vs fixup:
Both will squash the specified commit into
the previous one, the difference is how the
log message is handled:

= fixup: log message the squashed commit is

discarded, the message of commit into which
the squash occurs is kept.

= squash: an editor opens to let you
interactively enter a new log message. It is
pre-filled with the messages of both commits.

You can delete a line to delete a commit
(instead of changing "pick" to "d"/"drop".

\

To abort the rebase, delete all lines in the
file (comments do not need to be deleted).

- :
--fIXU P comm Its History before the rebase.

= When you realize you made a mistake in an earlier commit, you can directly tag it as O

de7c91b | fixup ! add function_2()
a fixup with git commit --fixup=<hash/ref of commit to be fixed>

= Running an interactive rebase with the --autosquash option added, Git will O b1241f2 | fixup ! add function_1()
automatically re-order commits for you. I

O 57d33a3 | do something else

work on the fix for function 1(). Commit it as a --fixup. [
$ git add <file that was fixed> .
$ git commit --fixup=ba0824b (::) c3738a7 | add function_2()
S I
work on fix for function 2(). Commit it as a --fixup. <:> .
$ git add <file that was fixed> ERE) add function_1{)
$ git commit --fixup=c3738a7 I
v HEAD~5 —>O 17dc23a
Now we can rebase with the —-autosquash option.
$ git rebase -i --autosquash HEAD~5
$
History after the rebase.
Commit hash are
with the ——autosquash option enabled, Git automatically places now different !
the fixup commits in at the correct position, and marks them as O c23de56 | do something else

"fixup". No manual editing needed ! |

[

pick ba0824b add function 1 () 4783033 | add function_2()

fixup bl241£2 fixup ! add function 1() l
pick c3738a7 add function 2 () (:)
fixup de7c91b fixup ! add function_2()

pick 57d33a3 do something else I

HEAD~5 —» O 17dc23a

J

d34e88a | add function_1()

e
S
Q
e
©
(S
>
S
(1)
i
o
()
S
K
Q.
Q.
-
(Vs

Rebasing the root commit (first commit of a repository)

* Theregular git rebase -i/--interactive command does not allow to
edit the first commit of a Git repository.

= To rebase history including the first commit, the —-root option must be added:
git rebase --root --interactive <tip commit of branch>

/

With the ——root option, you must indicate the tip of the branch to rebase,
not the parent commit (there is no parent to the root commit)

Examples:

$ git rebase --root --interactive HEAD
$ git rebase --root -i master

demo: interactive rebase

exercise 1

The vim cheat-sheet rebase

git reset

git reset — move the HEAD to a specific commit

» The git reset command moves the HEAD pointer to the specified commit.

Commits between the former HEAD position and its new positon will be "removed" from history
upon the next commit (but they will remain in the Git database for a little while).

git reset <commit to where HEAD should be moved> ‘

-0-0-0

57dc232

ae7c3la

b1241f5

0flc3bc

git reset HEAD~2
git reset bl241f5

< HEAD

) 57dc232

ae7c3la

b1241f5

0flc3bc

git commit

& HEAD

©-0-0

23d77bc

b1241f5

Oflc3bc

& HEAD

git reset — move the HEAD to a specific commit

= 3 options allow to specify how the index and working tree should be affected:

e —--soft :resetthe HEAD only (keep staged content in the index).
e -—-mixed: reset the HEAD + the index.

e —-hard :resetthe HEAD + the index + the working tree. < & The --hard option resets
(overwrites) the working tree !

This can lead to data loss if you
glt reset __mixed/__SOft/__hard <commit ref> have uncommitted changes_

t

mixed is the default value (so you don’t need to actually specify it)

Reset options effects: a check mark indicates elements that are reset.

HEAD

Staged content Files on disk
--soft \/

--mixed \/
--hard \/

v
v

git reset --soft use case: merge the last 2 commits into one
——soft :resetthe HEAD only (keep staged content in the index).

git reset --soft HEAD~2

N

HEAD =) O
| our intention is

O to merge these
2 commits.

Lol

(.

L4

|';\)

\ Y

Since all modifications are still staged,
. . we can directly create a new commit,
git commit which is the merge of the two commits

/—\ we had earlier.

- Changes introduced from

the “removed” commits HEAD I:> O

are still in the index **,

| E I
D9 BN N
O O

O

master

“removed” commits, the latest version of the conflicting

** |f there are conflicts between the content of the 9
lines remains in the index.

O 0

master master

The HEAD was reset, but the
modifications introduced by the
“removed" commits are still in
the index and the working tree.

git reset --mixed use case: clear the staging area from new content

= —-mixed :reset the HEAD + the index.
= Useful to clear the index from newly staged content, e.g. when you staged something by mistake.

git reset --mixed HEAD
git reset HEAD
This represents staged

content: it's in the index,
but it’s not committed.

) s

HEAD = O O HEAD =) O O The newly staged content is now

. | « | removed from the index, because the
dev \ : dev \ : index was reset to its state at the

HEAD position.
I I

O O But any changes made in the working
- - tree is still there: ——mixed does not

modify the working tree, so we are
not losing any work.

master master

git reset --hard use case: reset a branch to a remote
= —-hard:reset the HEAD + the index + the working tree.

= When a remote branch had "forced updates" (i.e. someone changed its history),

a ——hard reset is often a good choice to keep a clean history.
* master origin/master

N\/‘

git reset --hard origin/master
* master origin/master |

HEAD = () O O

| * master origin/master CI)

I
C|> /‘ git pull 1C|>
With a =-hard reset, the
C|> O ’ history is much cleaner!
/g

O Additional O ‘
: | /

merge” commit

Someone applied a fixup to the last 2 O We can merge withagit pull, but
commits, so they are now different. | that will leave us with an ugly history!
As a result, history diverges between the O

local and remote master branches.

git reset --hard use case: reset a reset, a merge, a rebase (or anything, really)

= A --hard reset can be used to undo (almost**) any operation, and get back exactly to the previous state *
* as long as Git did not do garbage collection on orphaned commits and deleted them (see two slides further).

Q If you reset —-hard changes that have not been committed/staged/stashed, you will lose your work!
(untracked files are not affected)

= Example: When you thought you're on dev, but you really are on master...
What if | don’t

g
git reset --hard ba0824b remember this

I - ~ - hash ?
Our intention is to git reset hard HEAD~2 git reset --hard HEAD@{1l} _
delete these 2 /_\ /_\ Git reflog to
the rescue... =»
commits
\ 7z
I O O oups, | was on the O
| l wrong branch! Did | |
- justlose 2 days of
O O 220829 <:I HEAD C|> // \\ work on master ?? O C><:I HEAD
I
\ 1
/
O O O _, O O

N -

dev O deV\O<:IHEAD dev O
O O O

: master * : master * : master *

The Git reflog and the HEAD@{x} relative reference

= git reflog shows the “reflog”: a chronological log of all operations that were performed on a repository.

git reflog

S git reflog

11d4dc8| (HEAD -> master, dev) HEADW@{O}: merge dev: Fast-forward
5061456 |HEAD@{1}: checkout: moving from dev to master

> ||11d4dc8| (HEAD -> master, dev) HEADQ@{2}: commit: Update README
5061456 |HEAD@{3}: checkout: moving from master to dev

5061456 |HEAD@{4}: commit: Add README file

0£84d17|HEAD@{5}: commit (initial): Initial commit

/

Commit IDs of commit at HEAD position

v

= The HEAD(@ {x} notation indicates the positon of the HEAD pointer relatively to the reflog.

" |t can be used as a commit reference, e.g. git reset --hard HEAD@{1}.

HEAD@ {0} Current position of HEAD.
HEAD@Q {1} Positon of HEAD 1 operation ago.
HEAD@Q {2} Positon of HEAD 2 operations ago.

HEADQ {x} Positon of HEAD x operations ago.

e
S
Q
e
©
(S
>
S
(1)
i
o
()
S
K
Q.
Q.
-
(Vs

e
S
Q
e
©
(S
>
S
(1)
i
o
()
S
K
Q.
Q.
-
(Vs

What happens to orphaned commits ?

When a commit (or a group of commits) are no longer part of a branch or referenced by a tag,
they are said to be orphaned. E.g. in the diagram on the right, aftera git reset, two commits

(dashed circles) are now orphaned.

Orphaned commits remain accessible in Git's database for a while, until they are
garbage collected (i.e. deleted) by Git.

To retrieve content from an orphaned commit, you can:

* Display its content with git show <orphaned commit ID>
* Checkitoutinanewbranch:git switch -c <orphaned commit ID> or
git checkout -b <orphaned commit ID>
* Checkit out in detached head mode: git checkout <orphaned commit ID>
* Reset your current branch toit: git reset --hard <orphaned commit ID>
Warning: this last option might itself create orphaned commits — also make sure you have a
clean working tree, otherwise uncommitted changes will be lost).

If you don't know the hash of an orphaned commit, you can find it by looking at the output of
git reflog --all.Thisis alog of all operations that that were done by Git, and all commits

will be referenced in there.

If, for some reason, you want to force-delete all orphaned commits (and associated data), run
the following command sequence. Warning: only do that if you understand why you're doing it.
git reflog expire --expire=all --all
git gc --aggressive --prune=now

Lol

(1

<=’

-
4)

\1

HEAD »O O
dev O
O

master

History overwrite warning !

Commands illustrated in this section (in particular git rebase and git reset) often
result in a modification of a repo’s history.

When pushed to a remote, this can cause various levels of “inconvenience” to other
people working on the same project.

= |deally, do this type of operations before pushing to a remote.

= |f you nevertheless need to push history modifications:

* Use “force” push: git push --force

* Coordinate the update with other people working on the repo, as they might need to do
a git reset --hard origin/<branch name> on their local repo.

= (Try to) never rewrite a “production” branch shared with the outside world.
Typically this would be the “main” or “master” branch. é

exercise 2
The big reset

git checkout

The "detached HEAD" state explained

-
)
©
£
£
[
(2

Reminder: checkout the entire state of an earlier commit

= Checking out a commit will restore both the working tree and the index to the
exact state of that commit.

= |t will also move the HEAD pointer to that commit.

git checkout <commit reference>

Example:

$ git checkout ba08242
$ git checkout HEAD~10
$ git checkout v2.0.5

= But you will enter a "detached HEAD" state.... = |$ git checkout ba08242
Note: checking out 'ba08242'.

y) You are in 'detached HEAD' state. You can look
" To get back to a “normal” state: around, make experimental changes and commit

git checkout <branch> them, and you can discard any commits you make
in this state without impacting any branches

by performing another checkout.

Detached HEAD: when HEAD points directly to commit instead of a branch

= Aftera git checkout <commit> command, HEAD points directly to a commit rather than
a branch: this is known as detached HEAD state.

git checkout ba0824a Add 2 commits
These commits do not
devel I:>O devel I:>O devel I:> O belong to any branch !
I I I ;ST TTTTTTTETTE S
© Qé@master*caheap Q (O master Q_O O Heap
\\ | | N T

O O 00

|
ba0824a O ba0824a O & HEAD ba0824a O
| |

O . 0

master

—
N -

What if | go back to a “real” branch ? =

meanwhile, somewhere
in the object store...

Detached HEAD state

Daddy, did you
see grandpa ?

git checkout master

N

devel = O

|
O O<:|master<:lHEAD
\ |

j_.

T ——————

=

—— -

devel O
|
O
AN

ba0824a

ba0824a These commits do not

| belong to any branch ! |

ba0824a

* Commits that are not longer referenced by a branch or a tag are not shown anymore by git log.
* These commits are still in the object store (until they get garbage collected), but can only be
reached directly through their commit hash - or reflog references HEAD@ {x}.

Shjé
6%'
&
> Sy

master *@HEAD
74

O O«tmp
I I

Creating a new branch while in detached HEAD state

= To preserve commits created in detached HEAD state, a new branch can be created at any time while
we are in “detached head” state. After the branch is created, we are no longer in detached HEAD state.

git switch —-c/--create <branch name>
git checkout -b <branch name>

N

In “detached head” state On a regular branch (here “tmp”)

devel '=>O > master devel '::)O 2 master

CI) O O EHEAD (I) O (<« tmp* & HEAD
N N

ba0824a O ba0824a O

Note: git switch -c isthe modern alternativeto git checkout -b in Gitversions>=2.23

Detached HEAD $ git checkout e35e2a4

Note: switching to 'e35eZad’'.

" In praCtice; Git Wi“ give you a IOt You are in 'detached HEAD' state. You can look around, make
of warnings and advice when in experimental changes and commit them, and you can discard
any commits you make in this state without impacting an
detached HEAD state: Y Y e 9 any

branches by performing another checkout.

If you want to create a new branch to retain commits you
create, you may do so (now or later) by using -c with the
switch command. Example:

[:$> git switch -c <new-branch-name>

HEAD is now at e35eZ2a4 removed from git file

$ git checkout master

Warning: you are leaving 2 commits behind, not connected to
any of your branches:

0860b65 another commit outside of branch
0dc47b9 where will that lead us ?°?

If you want to keep them by creating a new branch, this may
be a good time to do so with:

Git reminds you of the
E:$> git branch <new-branch-name> 0860b65 hash of the commit, in

case you don’t have it.
Switched to branch 'master'

the git stash

Git’s “cut and paste” functionality

When workflow interruption strikes ...

Sometimes we quickly need a clean working tree, but without losing un-committed changes
already made to our files. For instance:
= Work on in a different branch (e.g. fix a bug) before finishing work on the current branch.
= Move current edits to another branch (e.g. you started to work in the wrong branch).

= Do a rebase (rebase with un-committed is not allowed).

git stash =) Saves un-committed changes in the working tree (both staged and un-staged) to
a “temporary commit®, Then resets the working tree to the current HEAD position
(i.e. the last commit in your current branch), leaving a clean working tree.

git stash pop | =) Restores stashed modification by merging them into the current HEAD (This can
potentially require manual conflict resolution).
The restored content is deleted from the stash.

[+d
Example: make edits on a different branch while having work in progress.

-~ - itted changes
O_O_(),un committe
/ ﬁ N
O O O feature *
iy

ity
devel HEAD stash stack
___ git stash
o-o-o~ °
g stash stack (:) stash@{0} git switch devel
___ ... make edits to devel ...
O_O git commit ...
/ @
g stash stack |((stash@{0}
___ git switch feature
O_O_("\. git stash pop
/ a
O—0O0—0—0 ¢
> stash stack

/
O—0—0—

master *

OOO/

master

O—O devel

Lol

(1

<=’/

un-committed changes stash stack

O—O devel *

stash stack

stash stack

3]
Example: move edits to different branch (e.g. started working on the wrong branch).

git stash
git switch devel

git stash pop

Depending on your edits (if they do not
overwrite a file on the branch you are switching
to), you might be able to switch branches
directly without having to do and stashing.

Additional info about git stash...

= More than one set of changes can be stashed (see next slides).

= Although stashed items can in principle remain in the stash for a long time, it’s best to view it as a
temporary location. Don’t turn it into an alternate development branch!

»= The content of the stash stays local (even if you git push), so there is not backup for it on a remote.

» Anything done with git stash can also be achieved using branches (i.e. create new temporary
branch and later rebase/merge its content), it's just more convenient to do it with git stash.

» By default untracked files are not stashed. To stash them, the -u/--include-untracked option
must be added.

= By default, both staged and un-staged modifications are stashed. However, the distinction between
staged and unstaged changes is lost upon applying the stash and all modifications will be un-staged.
Note: to not include staged changes, the —-keep-index option can be used.

= |f needed, the content of the stash can be deleted with git stash clear ‘

" git stashisactually ashortcutforgit stash save
(save is the default action for the git stash command).

e
S
Q
e
©
(S
>
S
(1)
i
o
()
S
K
Q.
Q.
-
(Vs

[+]
Using multiple stash slots

" git stash can actually store multiple stashes.
= git stash pop isashortcutforgit stash apply +git stash drop
= specific stashes can be accessed with stash@{x} (where x = stash index)

= git stash clear deletes all stashes.

git stash git stash git stash pop
stash stack r\ r\ r\
(n stash@{0} (t stash@{0} (l stash@{0} (. "V stash@{0}
() stash@{1} () stash@{1} () stash@{1}

i (::n stash@{2}
L
S
o .
© git stash apply git stash drop
S. (git stash apply stash@{0}) (git stash drop stash@{0})
E -
5 (() stash@{0} ((stash@{0}
qE, < 1 (::n stash@{1l} | > (::n stash@{1}
o - :
Q git stash clear | (1 stash@{2} git stash drop
>
(7, stash@{1l}

Listing the content of the stash

= List the content of the git stash: git stash list

Example:

$ git stash list
stash@{0}: WIP on master: 86eae5c Adds new file
stash@{1l}: WIP on master: 86eae5c Adds new file

= Show the content of a specific stash item. By default, stash@{0} is shown.
Adding the —p option displays the exact content (diff view) of a stash item.

git stash show
git stash show —p # detailed diff view of stash item.
git stash show —-p stash@{x} # show a specific stash item.

e
S
Q
e
©
(S
>
S
(1)
i
o
()
S
o
Q.
Q.
-
(Vs

e
S
Q
e
©
(S
>
S
(1)
i
o
()
S
K
Q.
Q.
-
(Vs

git stash command summary

command description

git stash stash uncommitted changes to a new stash item in the stash@{0} spot.
git stash save “message” An optional “message” can be added.

git stash pop Shortcut for apply + drop.

git stash pop stash@{x} By default, stash@{0} is popped. Other stashes can be popped with stash@{x} notation.
git stash apply Merge stashed item into current branch.

git stash apply stash@{x}

git stash drop Delete item from stash. By default, item stash@{0} is deleted.

git stash drop stash@{x}

git stash list List content of stash.

git stash show Show summary view of stashed item content.

git stash show -p Show detailed view of stashed item content.

git stash clear Delete all items from stash.

git tags

Label important commits

Why use tags ?

(8) ¢ devel
o V24 ° °
Tags are “labels” used to annotate important commits. (F) p Mmain
= Typical use case: tagging commits corresponding to versions. (e)avl.2
E.g.1.0.7,v1.0, v2.], etc. @)@ vl.1
There are 2 types of tags:
vP 5 (b) & v1.0
= Lightweight tags - pointers to a commit (like a branch). o
= Annotated tags - pointers to commits with additional metadata: "
= Tagger (person who made the tag).
= Date and time.
= Message.
Example of annotated tag metadata commit
tag 12.04 Author: ...
Tagger: Alice Smith <alice@redqueen.org> Comm?tter:
Date: Tue Feb 22 20:44:27 2022 +0100 ‘[3)0;"”‘“ TS5 o
ate: ...
Tag message == Version 12.04 LTS (Precise Pangolin) if;zn
Commit to which the tag is pointing = commit 45d56fa3c75e5e6a67d067e9b8eaecl679d3806e7 !

Top tree

Creating tags / !f no cc?mmit reference is specified, tl:ne tag

is applied to the current HEAD commit.

Lightweight tag: git tag <tag name> <commit reference>

Annotated tag: git tag -a -m “message” <tag name> <commit reference>

Having a message is compulsory for annotated tags (just like for commits).

Examples:
$ git tag 1.1.0 illegal characters in tag and branch names
$ git tag 1.0.9 ba0824a Spaces and characters such as ,~~:?*[]\ are not
$ git tag 1.0.8 HEAD~3 allowed in tag and branch names. It is recommended
to stick to lowercase letters, numbers, “-”, and “.”. |
[]

S # Create an annotated tag:
$ git tag -a -m "v20.04: Precise Pangolin" 20.04

¥ HEAD v HEAD ¥ HEAD
main = (e) main = (e) & 1.1.0 main = (e) & 1.1.0

@ git tag 1.0.9 ba0824a @
git tag 1.1.0 git tag 1.0.8 HEAD~3

@

d)
baos24a | () baos24a | (C) baog24a | (c) €2 1.0.9
5 £ N 5 " Haros

Examples:

Listing tags

$ git tag
1.8.4
= List all tags (sorted alphabetically): 1.8.5
1.8.5-rcl
glt tag 2.0.5
$ git tag -n
. . 12.04 v12.04 LTS Precise Pangolin
= List all tags and show their message (for annotated tags): 12.10 v12.10 Quantal Quetzal
git tag -n it tag -1 1.8.5%*

S g

1.8.5

1.8.5-rcl

= List only tags whose name matches a specific pattern:
$ git show 2.0.5

git tag -1 <search pattern> tag 12.04

Tagger: Alice Smith <alice@redqueen.org>
Date: Tue Feb 22 20:44:36 2022 +0100

ifi . . v12.04 LTS i 11
= Show content of a specific tag (annotation and commit content): bES Precise Fangotin

commit 1ba62733c75e5e6a67d067e9b8eael679d3806e7

glt show <tag name> Author: Mad Hatter <clocks@wonder.org>
Date: Tue Feb 22 20:35:09 2022 +0100

Commit message...

diff --git a/file b/file

= The “adog” command will also show tags: git log --all --decorate --oneline --graph

HEAD -> dev, tag: 1.0.0, master) Switch to new output format
. . tag: 0.2.1) fix: add check for missing files
glt log --all --decorate --oneline —-graph Improve output graph rendering

tag: 0.2.0) Add support for FASTA files
Add documentation

tag: 0.1.0) First version of pipeline
Initial commit

Sharing tags (push to remote)

By default git push doesn’t upload (push) tags to remote servers.

" You can push a specific tag with: git push <remote name> <tag name>

Example:
$ git push origin v2.3

*= You can push all tags by adding the --tags flag to the push command.

Example:
$ git push origin --tags

Deleting tags

= To delete a tag from your local repository: git tag -d <tag name>

Example:

$ git tag -d v3.2
$ git tag -d 12.04

Z!E This will not remove the tag from remotes !

= To delete a tag from a remote: git push <remote name> --delete <tag name>

Note: this is the same command as for deleting a branch from a remote.

Example:
S git push origin --delete v3.2

Checking out tags (revert the working tree to a specific tag)

= Tags are references to a commit, so you can use git checkout <tag> torevert the
working tree to its recorded state at the specified tag.

Example:

$ git checkout v2.0.1
$ git checkout 0.8.2

Reminder:

Performing such a checkout will put your repository in detached HEAD state:

" You can look at (or use) the “old version”, then switch back to a regular branch.
= |f you plan to make changes and add commits to an older version, you can either:

* Create a new branch rooted at your version tag.
git switch -c <new branch> <tag> oOr git checkout -b <new branch> <tag>

* Tag the (branchless) new commit your make so it doesn’t get garbage collected.

exercise 3
The backport

exercise 4

The treasure hunt

Note: this exercise can be done as exam to the course. € This exercise has helper slides

Introductory notes

& personal-branch

While this exercise is somewhat gameified, it nevertheless covers many of the
(feature branch)

important operations and collaborative workflows you would encounter while

doing real work: devel
* Each of the quests you will complete in this exercise can be seen as the main 2
equivalent of adding a new feature to a software or data analysis
pipeline.

* Completing a quest, merging your work into the main branch and adding
a tag, would be the equivalent of making a new release of your
work/software. :

About the branches used in the exercise:

= main is the production branch, i.e. the branch on which only final, production ready, material is published.
Do not work directly on the main branch.

= devel (for "develop") is the pre-release branch where the team will consolidate each "feature" (i.e. each
qguest of the treasure hunt) before merging it to main when a quest is completed.

= Short-lived personal branches (feature branches) will be created by each team member to add their work,
before merging it into devel.

= Asthis is an exercise, and we do not have much time, the personal branches will only contain 1 (or sometimes 2) commits
before they get merged into devel, but you can imagine that in a real application more commits would be added.

Exercise 4 help: branch — rebase — merge sequence

= One of the objectives in the exercise is to keep a clean and readable history while collaborating.
= This is a suggested procedure when working on a new “feature”.

= |n this example, Alice is the “captain” in the exercise. . = pp feature-cp
& feature-cp & devel
main = main =) () @ devel main =y (J a devel main =
create new create new merge personal branch
team branch personal branch into team branch
A~ > > > At this point the
L4 work on personal “@” L4 personal branch
[P branch A A can be deleted.
push new branch to remote, push changes to remote,
other group members update their repo. other group members update their repo.

: <& devel

main 2> () & devel main >

Y, Y,

GitHub GitHub

Exercise 4 help: branch — rebase — merge sequence

= Bob is the “first-mate” of the crew. He retrieves changes made by Alice
to the team branch (devel) and adds his own changes to it: feature-fm >

& devel feature-fm |:> <:| devel &devel
main = : main main =)
retrieve changes rebase on team
from remote branch Lo
> To indicate a new
O &) q@a “release”, a tag is added.
GitHub (T (TN 1

e

43

merge into i
feature-fm 2> O < devel teamgbranch &devel main £ @ <A devel v1.1.0
. / . When the feature is
main =» main =) completed, someone
push changes to merges into main and
remote pushes to the remote
> >

At this point the i\ O O
personal branch {Z5)

can be deleted. /T GitHub GitHub

Exercise 4 help: creating a new repo on GitHub 1

V
1. In your GitHub account, go to Repositories and [0 Overview] Repositories 4 [Projects @ Packages

click on New (green button).

Find a repository... Type ~ Language ~ Sort ~

2. Create a new repo: Create a new repository

A repository contains all project files, including the revision history. Already have a project Import a

* Enter a Repository name. ISs— P
* Add a short Description. ooty o
* Make the repo Public (default). Ntmpu
* Do not initialize the repo, as you will import data from
an existing repository (leave all boxes unchecked). Owner * Repository name *
* Click Create Repository. el) /| resien i -

Great repository names are short and memorable. Need inspiration? How about solid-spork?
Description (optional)
3. Follow instructions to push an existing repository....

Note: the main branch’s name is already “main”, so you can skip “git branch -M main”.

® Q Public
m—l Anyone on the internet can see this repository. You choose who can commit.

Quick setup — if you've done this kind of thing before o) 6 Private

You choose who can see and commit to this repository.
or HTTPS SSH gitf@igithub.com:robinengler/treasure_hunt_test.git fis]

Get started by creating a new file or uploading an existing file. We recommend every repository include a README, LICENSE, and .gitignore. oo < % P
Initialize this repository with:

Skip this step if you're importing an existing repository.

...or create a new repository on the command line] Add a README file

echo "# treasure_hunt_test" >> README.md © This is where you can write a long description for your project. Learn more.
git init

git add README.md [7] Add .gitignore

git commit -m "first commit® Choose which files not to track from a list of templates. Learn more.

git branch -M main

git remote add origin git@github.com:robinengler/treasure_hunt_test,git [] Choose a license

git push -u origin main A license tells others what they can and can't do with your code. Learn more.

...or push an existing repository from the command line ﬁ Create repository

git remote add origin git@github,com:robinengler/treasure_hunt_test,git fiu]
git branch -M main
git push -u origin main

Exercise 4 help: adding members to a GitHub repo.

1. On the homepage of the repo on GitHub, A robinengler / treasure_hunt_test pusic ﬂ
select the Settings tab.

<> Code (©) Issues 19 Pull requests (> Actions [T Projects 0 Wiki @ Security |~ Insights £33 Settings

2. In the Settings tab, click Options Settings
on Manage access.
:> Manage access Repository name
treasure_hunt_test Rename

Security & analysis

[Template repository

Branches Template repositories let users generate new repositories with the same directory structure and files. Learn more.
3. Add your team members by clicking Oions Who has access
on Add people (green button) and
. . . Manage access PUBLIC REPOSITORY [O] DIRECT ACCESS A
entering their GitHub user name. o N
. . This repository is public and visible to 1 has access fo this repository. 1
Security & analysis
anyone. collaborator.
Branches Manage ﬂ
Webhooks
Add people
Notifications Manage access -
Integrations [0 Selectall Type ~
Deploy keys
Q, Find a collaborator...
Actions
Roman Mylonas o
Environments o Q rmylonas * Collaborator H

Secrets

[+d
Exercise 4 help: generating a “personal access token” on GitHub

In order to push data (commits) to GitHub, you will need a personal access token (PAT).

1. In your user profile (top right),
click on Settings.

2. In your Account settings,
click on Developer settings.

3. In Developer settings, click
on Personal access tokens.

Signed in as
robinengler

(©) Setstatus

Your profile

Your repositories
Your codespaces
Your organizations
Your projects

Your stars

Your gists

Upgrade
Feature preview
Help

Settings

Sign out

Account settings
Profile

Account
Appearance
Account security
Billing & plans
Security log
Security & analysis
Sponsorship log
Emails

Notifications
Scheduled reminders
SSH and GPG keys
Repositories
Packages
Organizations
Saved replies

Applications

I > Developer settings

Settings / Developer settings

GitHub Apps

OAuth Apps

I > Personal access tokens

GitHub Apps

Want to build something that integrates with and extends GitHub? Register|
on the GitHub API. You can also read more about building GitHub Apps in

Go to next page

[+d
Exercise 4 help: generating a “personal access token” on GitHub

4. Add a Note (description) to your token and select 5. Copy the personal access token to a safe locations

the repo scope checkbox. The click Generate token. (for now maybe in a text file, but ideally in a password
manager). You will not be able to access it again later.

New personal access token
Personal access tokens Generate new token Revoke all

Personal access tokens function like ordinary OAuth access tokens. They can be use

. . L Tokens you have generated that can be used to access the GitHub API.
over HTTPS, or can be used to authenticate to the API| over Basic Authentication. ¥ g

Note Make sure to copy your personal access token now. You won't be able to see it again!

E>> repo access token

What's this token for?
+ ghp_9sypMu1uoJH14JA74MVMiRWEWUX5a021KjAP (0] Delete
Expiration *
30 days 4 The token will expire on Fri, Nov 5 2021

Select scopes

Scopes define the access for personal tokens. Read more about OAuth scopes.

6. When you will push content to GitHub for the first

E>> .4 repo Full control of private repositories
time in the project, you will be asked for your user

repo:status Access commit status

repo_deployment Access deployment status name and password. Instead of the password, enter
public_repo Access public repositories the personal access token you just created.

repo:invite Access repository invitations

security_events Read and write security events

E>» Generate token Cancel

a look under git's hood
The Git object store

©
=
Q
=)
©
(S
>
S
(1)
i)
o
()
S
9
Q.
Q.
=
(Vo]

The Git object store Ml .git directory

HEAD
branches/

* The "object store" is where Git stores the data and contig

i . description
metadata of the tracked files and commits. hooks/

info/
" |t'slocated in .git/objects » |objects/

refs

= Git stores data in 4 object types, all saved in the object store [.git/objects]:

Blobs: binary, compressed, file that stores the content of a file.
“blob” stands for “Binary Large OBject” (even if the object is not necessarily large)

Trees: Dictionary linking file names to blobs for a given directory.

Commits: metadata of each change introduced into the repository:
author, commit message, state of files, etc ...

©
=
Q
=)
©
(S
>
S
(1)
i)
o
()
S
9
Q.
Q.
=
(Vo]

Tags: name (e.g. software version) that points to a specific to a commit.

e
S
Q
e
©
(S
>
S
(1)
i
o
()
S
K
Q.
Q.
-
(Vs

Blobs (Binary Large OBjects)

= File that stores the content of a file (in a binary and compressed format).

= Does not store any metadata about the file, not even the file's name.

 two files with the same content have the same blob/SHA-1.
* two files with the same blob/SHA-1 have identical content. This allows fast comparison!

= Blobs are named after their content's SHA-1 hash*, and stored in the object store [.git/objects].

.git/objects/fa/263b8bb9%291aaa5059dad78bb38b63£4318c62
.git/objects/4a/b7e6dbb9b1dd73a3e0292e£f1d1b2909d107309

For performance reasons, the 2 first characters of the SHA-1 hash are used as sub-
directory name (this avoids having too many files in the same directory). The remaining
38 characters are the name of the file.

= Using a hash as file name creates so-called “content addressable” storage: the content of the file defines
its location. This avoids any risk of losing content when overwriting files, since any change in a file will
result in a new hash, and hence a new location.

* almost: Git adds a few header bytes to the content when computing file SHA-1 values.
you can get the SHA-1 hash computed by Git with: git hash-object -t blob <file to hash>

e
S
Q
e
©
=
>
S
(1)
i
o
()
=
K
Q.
Q.
-
(Vs

Commands in shell

Content of working tree

$ cd test project

$ echo "This is just a demo
project" > README.md

$ git init

.git
README . md

'

$ git add README.txt

.git
README . md

S echo "Free as in
freedom" > LICENSE. txt
S git add LICENSE. txt

7

Content of object store (.git/objects)

.git/objects/
info/
pack/

.git/objects/

info/

pack/
£f5/e333dff2cf029ec213cedbae9c94e99381£fb6

SHA-1 hash of "This is just a demo project” 1

.git
README . md
LICENSE. txt

$ cp README.md README copy.md
$ git add README copy.md

/7

.git
README . md
LICENSE. txt
README copy .md

.git/objects/

info/

pack/
£f5/e333dff2cf029ec213cedbae9bc94e99381£fb6
b0/282337246891c91e2eb67c87£0cea0923107ac

SHA-1 hash of "Free as in freedom" 1
.git/objects/
info/
pack/
f5/e333dff2cf029%9ec213cedbae9c94e99381fb6

b0/282337246891c91e2eb67c87£0ceal0923107ac

Nothing added to object store!
Because content of filel and file3 is the same.

Trees

* Tree = dictionary/table linking blobs to filenames - at a given directory level.
= Sub-directories are also tree objects, referenced by their parent directory.

= If two trees have the same hash, then their content is identical — fast comparison as
there is no need to look at individual files in the tree's sub-directory.

= The top tree (root of working tree) can be seen as a snapshot of the entire file content
at a given time.

Table/dictionary that links file names and
subdirectories to their SHA-1 value.

_E; 2 test_project =———> Top tree |57dc232 | (root directory) —

L S

% - B src README.md || 5e333d | ——— |blob| content of README.md

£ =] main.py LICENSE.txt |[bo28233] =——> |)

> — blob| content of LICENSE.txt

© =| fun.py src/ 38405¢6

= —~

CEJ — |=| README.md ‘ T\

K7 _ (=) LICENSE.txt tree 38405¢6] | main.py | | ba29oed | = |blob] content of main.py
o (src/ directory) -)

Q n. o

3, LY ddo8te blob| content of fun.py

e
S
Q
e
©
(S
>
S
(1)
i
o
()
S
K
Q.
Q.
-
(Vs

Trees

= Trees are saved in the object store, as a file named after their hash — just like blobs.

Top tree | 38405c6

content of object store [.git/objects]

.git/objects/
info/
pack/

P 38 /405c63£62a3cbblbl4e621lc2c£4c94e85d88b9
81l/5de0aff2e7b3a6ab90e967102b9745594be7e3
b0/282337246891c91e2eb67c87£0ceal0923107ac
ba/2906d0666cf726c7eaadd2cd3db615dedfdf3a
—r 5 /c30998ad0a9e8e46c5ebbac65a2£0823af15a0

dd/598fe7a9£70724£115£3c£97b5879c0al0a3b2

README.md | | f5e333d
LICENSE.txt b028233
src/ 38405c6
tree c5c§099

main.py ba2906d

fun.py dd598fe

£f5/e333dff2cf029%9ec213cedbae9c94e99381fb6

44

44

blob

Commits

= Commit objects are lightweight:

* they are a collections of metadata.
* they do not contain the data itself.

Content of a commit -

Author: Mad Hatter \
Committer: Alice ID of commit

Commit msg: Fix bug in function foo() []
St LT ST TG SHA-1 [—>|815de0aff2e7b3a6ab90e967102b9745594be7e3

Parent:| 45d56fa
Tree: | 57dc232

e
S
Q
e
©
(S
>
S
(1)
i
o
()
S
o
Q.
Q.
-
(Vs

= Commits point to a Tree object — the top tree object of the Git index content at the time the commit was made.
This is how Git can retrieve the state of every file at a given commit.

= Commits point to their direct parent — forming a DAG (Directed Acyclic Graph) where no commit can be modified
without altering all of its descendants.

root commit | fe3306a commit | 45d56fa commit | 815de0a
Author: ... \ Author: ... \ Author: Mad Hatter \
Committer: ... Committer: ... Committer: Alice
Commit msg: ... Commit msg: ... Commit msg: Fix bug in function foo()
Date: ... Date: ... Date: 24.02.2020 10:43
Parent: none Parent: | fe3306a Parent:| 45d56fa
Tree: | bd654b1 Tree: Tree:

! 1 !

.T:" Top tree | bd654b1 Top tree | 28ad171 Top tree|57dc232 | (root directory) —
= Y
= /I README.md | | f5e333d | ==—=t=> |plob

—\
E / LICENSE.txt | [bo2s233| ———>
> / blob
1 /! src/ 38405¢6
c 7
CEJ / ‘

7

@ == —————————- oo J--- tree (38405¢6 | | main.py || ba2906d > |blob
g__ ! Top tree = I (src/ directory) R
3 1 snapshots of entire content ! fun.py dds98fe ~ lblob
(7, e e e e —————

Commits

= Commits are saved in the object store, as a file named after their hash — just like blobs and trees.

Content of commit content of object store [.git/objects]
Author: Mad Hatter \\ Ig';tfbjecr's/
. . info

Committer: Alice] _] pack/

Commit msg: Fix bug in function foo() | Commit saved in object store, |35,405c63£62a3chb1b14e621c2cE4c9485d88b9 < tree

Date: 24.02.2020 10:43 named after its hash =81 /5de0aff2e7b3a6ab90e967102b9745594be7e3

' _ T ’ b0/282337246891c91e2eb67c87£0cea0923107ac <« blob

Parent:| 45d56fa ba/2906d0666cf726cTeaadd2cd3db6l5dedfdf3a <=

Tree: 57dc232 c5/c30998ad0a9e8e4d46c5eb6ac65a2f0823af15a0 <
dd/598fe7a9£f70724£f115f3c£97b5879c0al0a3b2 <=
£5/e333dff2cf029ec213cedbae9bc94e99381fb6 <=

git commit triggers the creation
of a commit object

= = |n our example, the object store has now 7 objects:

= command in shell « 4 blobs — one for each file tracked in the repo.

= $ git commit -m "Fix bug in function foo()" » 2 trees —src/ and the root of the working dir.

[master (root-commit) 815delOa] Fix bug in function foo () o . .

E. 4 files changed, 4 insertions (+) 1 commit. ﬁ test_project

- create mode 100644 LICENSE. txt 'ﬁ

S create mode 100644 README.md sre

c create mode 100644 src/fun.py . .
main.

GEJ create mode 100644 src/main.py Py

Q fun.py

= - (=] README.md

7 - (2] LIcENSE txt

The Git index

When a file is added/updated to
the index, its content gets stored
as blob in the object store.

Li objects

0f1c3b71...

7cch642c...

cb1a054c...

» The Git index is a binary file located in [.git/index].

= The index has no copies of the data, it's only a table
linking file names with blobs.

git add README.txt

git commit

vl

N

computes the SHA-1 hash for
the top tree of the index, and
uses it in computing hash of
commit.

— — e
README.txt | cb1a054c... 0f1c3b71... 0f1¢c3b71...
script.py 83f2d93e... 7cc5642¢. .. 7cc5642¢. ..

— — e
README.txt | cb1a054c... cb1a054c... 0f1c3b71...
script.py 83f2d93e... 7cco642c... 7cch5642c...

e \

README.txt

script.py

cb1a054c...

cb1a054c...

cb1a054c...

83f2d93e...

7cch642c...

7cch642c...

Thank you for attending this course Swiss Institute of

Bioinformatics

