
www.sib.swiss

Robin Engler
Vassilios Ioannidis

Lausanne, 16-17 Oct 2024

Version control with Git - first steps

First steps with Git: course outline

 Introduction to Version Control Systems and Git.

 Git basics: your first commit.

 Git concepts: commits, the HEAD pointer and the Git index.

 Git branches: introduction to branched workflows and collaborative workflow
examples.

 Branch management: merge, rebase and cherry-pick.

 Retrieving data from the Git database: git checkout.

 Working with remotes: collaborating with Git.

 GitHub: an overview.

Course resources

Slides, exercises, exercise solutions, command summary
(cheat sheet), setting-up your environment, link to
feedback form, links to references.

https://gitlab.sib.swiss/rengler/git_course_public

Course home page:

Google doc:

Questions: feel free to interrupt at anytime to ask questions, or use
the Google doc.

Register for collaborative exercises (and optionally for exam),
FAQ, ask questions. Link sent via email before the course.

https://gitlab.sib.swiss/rengler/git_course_public

Course slides

Regular slide
[Red]

Reminder slide
[Green]

Supplementary
material
[Blue]

Slide covered in detail during
the course.

Material we assume you know.
Covered quickly during the course.

Material available for your interest, to read on your own.
Not formally covered in the course.
We are of course happy to discuss it with you if you have questions.

 3 categories of slides:

GitHub-specific
[Purple]

GitLab-specific
[orange]

Some slides are specific to GitHub or GitLab.

Learning objective

source: https://xkcd.com/1597

 Learn the concepts behind Git.

 Understand when and why to use each command.

 Collaborative workflows using GitHub/GitLab.

 Learn to re-write history (day 2).

https://xkcd.com/1597

 This course focuses exclusively on Git concepts and command line usage.

 Many GUI (graphical user interface) software are available for Git, often
integrated with code or text editors (e.g. Rstudio, Visual Studio Code,
PyCharm, …).

It will be easy for you to start using them (if you wish to) once you know
the command line usage and the concepts of Git.

Command line vs. graphical interface (GUI)

version control
a (very) brief introduction

Why use version control ?

Version control systems (VCS), sometimes also referred to as source control/code managers (SCM),
are software designed to:

 Keep a record of changes made to (mostly) text-based content by recording specific
states of a repository’s content.

 Associate metadata to changes, such as author, date, description, tags (e.g. version).

 Share files among several people and allow collaborative, simultaneous, work on the
repository’s content.

 Backup strategy:

• Repositories under VCS can typically be mirrored to more than one location.

• The database allows to retrieve older versions of a document: if you delete something and
end-up regretting it, the VCS can restore past content for you.

 In the case of Git, entire ecosystems such as GitHub or GitLab have emerged to offer
additional functionality:

• Distribute software and documentation.

• Run automated pipelines for code testing and deployment (CI/CD).

• Team and project management tool (e.g. issue tracking, continuous integration).

A brief history of Git

The first commit of Git’s own repository by Linus Torvalds in 2005.

 First release in 2005.

 Initially written by Linus Torvald (who also wrote the first Linux kernel in his spare time…).

 Created to support the development of the Linux kernel code (> 20 million lines of code).

Su
p

p
le

m
e

n
ta

ry
m

at
e

ri
al

…
(some of) The principles that guided the development of Git

Linus wasn't satisfied with existing version control software, so he wrote his own…
He had the following objectives (among others) in mind:

 Distributed development: allow parallel, asynchronous work in independent repositories that do
not require constant synchronization with a central database. Each local Git repo is a full copy of
the project so users can work independently and offline.

 Maintain integrity and trust: since Git is a distributed VCS, maintaining integrity and trust
between the different copies of a repositories is essential. Git uses a blockchain-like approach to
uniquely identify each change to a repository, making it impossible to modify the history of a Git
repo without other people noticing it.

 Enforce documentation: in Git, each change to a repo must have an associated message. This
forces users to document their changes.

 Easy branching/merging: Git makes it easy to create new branches (i.e. lines of development) in a
project. This encourages good working practices.

 Free and open source: users have the freedom to run, copy, distribute, study, change and improve
the software.

Part I

Git basics
Working principle, definitions and

making your first commit

Git working principles
and definitions

Basic principle of Git

Our objective: record the changes made to the content of a directory on our local machine.
How we proceed:

• Take snapshots (current content of files) at user defined time points – they are not taken automatically.

• Keep track of the order of snapshots (the relation between them) so their history can be recreated.

• Associate metadata with each snapshot: who made it, when, description, …

Time point 2

test-project

README.md

script.py [v2] doc

test-project

README.md

script.py [v3]

user_guide.md

publication.pdf

test-project

script.py

Time point 1 Time point 3

snapshot of directory at
time point 1

script.py

snapshot of directory at
time point 2

README.md

script.py [v2]

snapshot of directory at
time point 3

user_guide.md

publication.pdf

README.md

script.py [v3]

is descendent of…

is parent of …

Git can track any types of files (text
or binary), but is optimized to work
with not-too-large text files.

c1 c2

script.py

README.md

script.py [v2]

user_guide.md

publication.pdf

c3

Definitions: snapshots are called “commits”

Time point 2

test-project

README.md

script.py [v2] doc

test-project

README.md

script.py [v3]

user_guide.md

publication.pdf

test-project

script.py

Time point 1 Time point 3

README.md

script.py [v3]
ba08242c3738a757d33a1

 Commit = snapshot + metadata (author, time, commit message, parent commit ID, etc. …).

 Create a new commit = record a new state of the directory’s content *.

Each commit has a unique ID.
(shown here in abbreviated form)

This represents
a "commit"

3c1bb0cd5d67dddc02fae50bf56d3a3a4cbc7204 Each commit has a unique ID number / hash (40 hexadecimal characters):
commit ID

* As will be seen in later slides, this statement is not 100%
correct, but is a good-enough approximation for now.

Working tree

Definitions: commits are stored in a repository (or “repo”)

 Git repository/repo: version history of files in a directory under Git version control, along
with metadata, and configurations necessary for version tracking and collaboration.

• Technically, a Git repository is only the hidden “.git” directory (see figure below), but often the term is also used to
refer to the entire directory under Git control (“test_project” in the example below).

• Not all files in a directory under Git control have to be tracked: there can be a mix of tracked and untracked files.

doc

test-project

README.md

script.py

user_guide.md

publication.pdf

Personal_notes.md

.git Actual Git repository
• Contains the version history of all tracked files, along with metadata and

configuration necessary to provide the functionalities of Git.
• Can re-create the version of all tracked files, at any commit.
• Each directory under Git control has its own repository.

Untracked file: file present in the git repo directory, but not under version control.

Tracked file: file under Git version control.

“Git repository”

 Working Tree: current content (on your computer) of a directory under Git control.
• More exhaustive definition: state of the project files corresponding to the branch/commit that is currently

checked out, augmented with uncommitted changes made to files, as well as untracked files.

Directory under Git version control
• Contains the actual Git repository, and the currently tracked and untracked files.

Representation
convention: each circle
represents a commit to
the Git repo.

Definitions: branches

 Repository history: history of commits (chronology of commits).

First commit in the history of the repository.

Representation convention:
different colors indicate
different Git “branches”.

Some commits can
have 2 parents.

 Branch: refers to a “line of development” within the commit history.
• Technically a branch is simply a reference to a commit.

Examples of Git use cases

Single repo, single branch

Use case
• Keep a documented log of your work.
• Go back and compare to earlier versions.
• Backup (if a paired with a remote).
• Distribute your code (if paired with remote)

The local repo must be associated to a remote repository to provide backup
functionality (and new commits must be regularly pushed). Highly recommended.

Each user has a full copy of the data*.
* Provided they regularly sync their local repo.

Exercise 1

Exercise 4Exercises 2 and 3

Single repo, branched workflow
(multiple development lines)

Use case
• Service in production with continued

development in parallel (e.g. adding
new feature).

• + all benefits of the previous use case.

Collaboration with
distributed and central repos.

Use case
• Collaborate with others (distributed

development).
• + all benefits of the previous use case.

Su
p

p
le

m
e

n
ta

ry
m

at
e

ri
al

…
Local vs. Remote repository

 When creating a new Git repository on your computer, everything is only local.

 To get a copy of your repository online, you must take the active steps of:

• Creating a new repository on a hosting service (e.g. GitHub, GitLab, Bitbucket, …).

• Associate the online repository with your local repo.

• Push your local content to the remote.

 By design, Git does not automatically synchronize a local and remote repo. Download/upload of
data must be triggered by the user.

Su
p

p
le

m
e

n
ta

ry
m

at
e

ri
al

…
Using Git with large files: the problem

Git can store any type of file, “plain text” or binary.

Tracking large files together with code is an attractive proposition, e.g. in scientific applications:

 Data analysis/processing pipeline.
 Machine learning applications (training data and code in the same place).

 Git was designed for tracking code – i.e. relatively small text files.

 Adding large files to a Git repo is technically possible, however:

• Since Git is a distributed VCS (version control system), each local copy of a repository will contain a full copy of all versions
of all tracked files. Therefore, adding large files will quickly inflate the size of everyone’s repository, resulting in higher disk
space usage (on local hosts).

• Git’s internal data compression (i.e. packfiles) is not optimized to work with binary data (e.g. image or video files). Each
change to a binary file will (more or less) add the full size of the file to the repo, taking disk space and slowing down
operations such as repo cloning or update fetching.

• Commercial hosting platforms impose limits on the size of files that can be pushed to hosted Git repos (GitHub: 100 MB,
GitLab: no file limit but 10 GB repo limit).

… but Git does not work well with large files

It would be nice if we could store data (large files) together with code …

Su
p

p
le

m
e

n
ta

ry
m

at
e

ri
al

…
Using Git with large files: possible solutions

Git LFS (Large File Storage) is an extension for Git,
specifically designed to handle large files.

 Open source project: https://git-lfs.github.com

Not all hosting services support Git LFS, and when they do,
storage space is limited (additional space may be purchased).

Basic principle: large files are not stored in the Git
database (the .git directory), instead:

 Only a reference/pointer to large files is stored
in the Git database.

 The actual files are stored in a separate
repository or “object store”.

Git LFS (Large File Storage)

DVC (Data Version Control)

DVC (Data Version Control) is a software that integrates
with Git (a sort of layer used on top of Git) to allow
versioning and storage of large files.

 Open source project: https://dvc.org

https://git-lfs.github.com/
https://dvc.org/

Git configuration

git config

Configuring Git

 The minimum configuration is setting a user name and email. These will
be used as default author for each commit.

 Setting user name and email:

Set user name and email at the global (user-wide) scope:

[alice@local ~]$ git config --global user.name "Alice"

[alice@local ~]$ git config --global user.email alice@redqueen.org

Retrieve setting values:

[alice@local ~]$ git config --get user.name

Alice

[alice@login1 ~]$ git config --get user.email

alice@redqueen.org

git config --global user.name <user name>

git config --global user.email <email>

 Config values can be retrieved by using the --get option.

 Examples:

The --global option/flag tells Git to store the setting
at the “global” (user wide) scope. Global settings apply
to all Git repos on your machine.

If you don’t add the --global option, then the setting
will only apply to the current Git repo.

Global settings are stored in the following file:

 Linux: /home/$USER/.gitconfig

 Windows: C:/Users/<user name>/.gitconfig
 Mac OS: /Users/<user name>/.gitconfig

Su
p

p
le

m
e

n
ta

ry
m

at
e

ri
al

…

On most systems, the default editor that Git uses is “vim”.

However, this can be configured with the following git config command:

git config --global core.editor <editor cmd>

Change the default editor to “nano”.

$ git config --global core.editor nano

Display the current default editor.

$ git config --global --get core.editor

nano

 Example: changing the default editor to “nano” (another command line editor).

Configuring Git: changing the default text editor

git config --global --get core.editor

 Display the current default editor used by Git:

Su
p

p
le

m
e

n
ta

ry
m

at
e

ri
al

…

Depending on their scope, Git configurations apply to all Git repositories of a user, or only to a specific repository.

The main 3 scopes are:

 Global (user wide): settings apply to all Git repositories controlled by the user.

 To save a setting as part of the global scope, add the --global flag to the git config command:
git config --global ...

 Stored in /home/<user name>/.gitconfig (Linux), C:\Users\<user name>\.gitconfig
(Windows) or /Users/<user name>/.gitconfig (Mac OS).

 Local (repo specific): settings apply only to a specific Git repo.

 Stored in the .git/config file of the repository.

 System (system wide): settings apply to all users and all repos on a given machine. This can only be modified
by a system administrator.

To show the list of all Git configurations, along with their scope and the location of the file they are stored-in:

git config --list --show-origin --show-scope

Configuring Git: scopes and their config file locations

git config –global ...

Su
p

p
le

m
e

n
ta

ry
m

at
e

ri
al

…

git add

Cross-platform collaboration: the line-end problem

Linux/Mac computer

Working directory
[project.git]

Windows computer

Git repo [.git]

xxx LF
xxx LF
xxx LF

xxx LF
xxx LF
xxx LF

Working directory
[project.git]Git repo [.git]

xxx CRLF
xxx CRLF
xxx CRLF

xxx CRLF
xxx CRLF
xxx CRLF

xxx CRLF
xxx CRLF
xxx CRLF

xxx CRLF
xxx CRLF
xxx CRLF

xxx LF
xxx LF
xxx LF

xxx LF
xxx LF
xxx LF

git add

online hosting service

Linux/Mac and Windows do not use the same “line-end” characters: this can cause problems when collaborating
with people who use a different operating system.

• Linux/Mac: uses LF (linefeed; \n) as line-ending character.
• Windows: uses CRLF (carriage-return + linefeed; \r\n) as line-ending character.

Wrong line-ending
for Linux/Mac!

Wrong line-ending
for Windows!

Problem: text files created on Windows will not work well on Linux/Mac and vice versa.

Su
p

p
le

m
e

n
ta

ry
m

at
e

ri
al

…

git add

Windows computer

xxx CRLF
xxx CRLF
xxx CRLF

xxx CRLF
xxx CRLF
xxx CRLF

xxx LF
xxx LF
xxx LF

xxx LF
xxx LF
xxx LF

The solution is to ask Git to automatically convert between LF and CRLF during
add/checkout operations using the configuration option:

Cross-platform collaboration: solution

git config core.autocrlf true

git config --global core.autocrlf true

git config core.autocrlf input

git config --global core.autocrlf input

 On Windows computers: core.autocrlf true should be set so that LF are
automatically changed to CRLF each time a file is checked-in or checked-out.

Linux/Mac computer

xxx LF
xxx LF
xxx LF

xxx LF
xxx LF
xxx LF

git add
xxx LF
xxx LF
xxx LF

xxx LF
xxx LF
xxx LF

xxx CRLF
xxx CRLF
xxx CRLF

 On Linux/Mac computers: core.autocrlf input should be set so that LF line-
endings (LF) are left untouched, and that CRLF are converted to LF when a file is
added (this will only be useful in the rare cases when a file with CRLF ending is somehow

present on the machine, e.g. because it was sent via email by a Windows user).

git config core.autocrlf false

git config --global core.autocrlf false

Change setting for current repo.

--global = change setting for all repos.

 core.autocrlf false to disable LF/CRLF auto-modifications (this is the default):

core.autocrlf input

core.autocrlf true

git config core.autocrlf

Su
p

p
le

m
e

n
ta

ry
m

at
e

ri
al

…

When core.autocrlf is set to True (this is in principle only for windows users), a warning
is displayed when files are added/checked-out to/from the git repo:

core.autocrlf warnings

$ git add test_file.py

warning: LF will be replaced by CRLF in test_file.py

The file will have its original line endings in your working directory

Somehow the message is the same during adding and check-out of files… so when
adding files to the index (git add), the message is actually the wrong way round:
it should be something like “CRLF will be changed to LF in checked-in file”.

Creating a new repo

git init

git clone

There are 2 main ways of obtaining a new Git repo…

• The entire content of the online Git repository is “cloned” (i.e.
downloaded) to the local machine.

• The online repo is automatically linked (i.e. setup as a “remote”)
for the local repo: we can push commits with no additional setup.

• Starting a new project on GitHub/GitLab and cloning it can also be
a way to create a new empty local repository and immediately link
it to a remote.

Turn a local directory into a Git repo
(start from scratch)

Clone a repo from an online source
(start from an existing repo)

git init

• A new, empty, Git repository is created in the current directory.

• Files present in the directory can now be version-controlled.
However, version-control of files is not automatic – more on
that later.

• At this point there is no online remote associated with the new
repo. Everything is only local.

git clone https://github.com/...

Cloning and working with remotes will be presented in more
details later in these slides.

Enter the directory to version-control, then run:

Creating a new Git repository (from scratch)

Initializes a Git repository in the current working directory,
turning it into a Git version controlled directory.

git init

 Everything is stored in this single .git directory:

 Complete version history of all tracked files.

 All other data associated to the Git repository (e.g. branches, tags).

 The content of .git can re-create the exact state of all your files at any versioned
time - e.g. if you delete a file accidentally or want to go back to an earlier version.

 git init creates a hidden .git directory at the root of the directory.

$ cd /home/alice/test_project # Enter directory to version control.

$ git init

Initialized empty Git repository in /home/alice/test_project/.git/

Listing the content of our directory, we now see a new .git directory.

$ ls -a

./ ../ .git/ doc/ src/ README.md

Never delete the `.git` directory
unless you intend to start again your repo from scratch

 You must be located at the root of the directory to version control before typing git init

Example: .git

doc

test_project

README.md

script.py

user_guide.pdf

The Git repo
(“database”) is
stored in the hidden
.git directory.

.git

doc

test_project

README.md

script.py

user_guide.pdf

State of the working directory (here just after git init)

How it looks in the file system

$ git status

On branch main

No commits yet

Untracked files:

doc/

README.md

script.py red = untracked files

“main” is the default
branch name.

git status

3 Useful commands to assess the current status of a Git repo:

 Show status of files in project directory (working tree).

$ git log

fatal: your current branch

'main' does not have any

commits yet

git log

 Commit history: show log of commits, i.e. the history of the repo.

Since we just created a new repo there are no
commits yet, which is why we get this error.

$ git ls-files

<empty output>

git ls-files

 List files that are currently tracked by Git (i.e. part of the Git index).

By default, files are untracked. This is why
there is currently no tracked file.

The new Git repository

 It does not matter whether the directory is empty or already contains files/sub-directories.

 Files in a project directory (working tree) are not automatically tracked by Git (files are untracked by default).

 You can have both tracked and untracked files in a project directory.

 Only files located in the project directory – or one of its sub-directories – can be tracked.

 Project directories are self-contained – you can rename them or move them around in your file system.

 You can (should) have multiple Git repositories on your system – typically one per project or per code/script you
develop * - don’t use a single Git repo to track the entire content of your computer!

 Nesting Git repositories (i.e. having one repo inside another) is technically possible, but should be avoided unless
there is a clear use-case for it.

Never delete the `.git` directory, you would lose the entire versioning history
of your repository (along with all files not currently present in the working tree).

Summary: when creating a new Git repo…

* An exception is the case of multiple projects that are tightly linked to another: in such cases it can be useful to have them all in a single repo – this is known as a monorepo.

Su
p

p
le

m
e

n
ta

ry
m

at
e

ri
al

…
Behind the scenes: the content of the .git directory

Directory where the copies of all
versions of all files are stored.

.git

├── branches

├── COMMIT_EDITMSG

├── config

├── description

├── HEAD

├── hooks

├── index

├── info

│ └── exclude

├── logs

│ ├── HEAD

│ └── refs

│ └── heads

│ ├── develop

│ └── main

├── objects

│ ├── 90

│ │ └── 357ff7068036cb72147cd0bac76115eaea0410

│ ├── 95

│ │ └── e40976f05bf0ece72031c3b2c66ac3ba2ba5d5

│ ├── info

│ └── pack

└── refs

├── heads

│ ├── develop

│ └── main

└── tags

Config settings specific to the repo.

Branch pointers

Git index (binary file)

Individual files are stored
under their SHA 256 hash.

Su
p

p
le

m
e

n
ta

ry
m

at
e

ri
al

…

A bare repo is a repo that has no working tree: it does not contain any instance of the files that are under
Git version control, but only the content of the `.git` directory/database.

This type of repo is found on remote servers used to share and sync changes across multiple Git
repositories. They can be initialized with the command:

“Bare” Git repositories

git init --bare

Making a commit

git add

git commit

Step 2 – Commit
Create a commit with the current content of the Git index. A
new commit (containing the current content of the Git index)
is added to the repository.

git commit -m "commit message..."git add <file or directory>

Step 1 – Staging files
Selection of files to commit. To make a new or modified file
part of the next commit, it must be added to the Git index
(also known as the staging area).

README.md

script.py

user-guide.pdf

Git index (staging area)
where the content of the next commit is prepared.

test-project

README.md

script.py

user-guide.pdf

notes.md

working tree

c1 README.md

script.py

user-guide.pdf

git commit

Git repository

In this example, notes.md is not part of
the commit because it was not staged.

In Git, creating a commit is a 2-step process:

Git index (staging area): “virtual space” where files are gathered before committing
them to the repository. Acts as a buffer between the working tree and the repository,
allowing to selectively chose changes to include in the next commit.
Technical note: in practice, the Git index is a file in Git’s database).

Definition: the Git index (or “staging area”)

git add README.md

git add script.py

git add user-guide.pdf

We can now update our definition of a commit:

Commit = snapshot of the Git index at a given time.
Git index = content of your next commit.

 Why do we need the Git index ?

 Why not simply commit the entire content of our directory ?

The objective of this 2-step procedure is to let users craft “well thought” commits.

 Commits are meant to be meaningful units of change in your code base (or the content you track).
 Not all current changes in the working tree need to be part of the next commit.

Why do we need this 2-step process ?

Working tree (actual files on disk) Git index (staging area)

git add README.md

README.md

Committed content

.git [local Git repository]working tree

$ git status

On branch main

No commits yet

Changes to be committed:

new file: README.md

new file: script.py

Untracked files:

File status (after staging)

$ git log

fatal: your current branch

'main' does not have any

commits yet

Commit history

Staging and making a commit: step-by-step example

Step 1: stage files to be part of the next commit.

Technical note: when a file is staged
(added to the Git index), a copy of the
file is added to the .git/ local repo.

So far we only staged files,
but no commit was made.
This is why the output of
git log is empty.

script.py

git add script.py

git add README.md script.py

Shortcut: multiple files can be added
in a single git add command.

git status now
indicates that 2 files
have been newly added
to the Git index.

$ git status

On branch main

No commits yet

Untracked files:

doc/

tests/

README.md

script.py

File status (before staging)

Initially, all files
are untracked.

.git

doc

test_project

README.md

script.py

user_guide.pdf

tests

output.csv

Working tree (actual files on disk) Git index (staging area)

git add README.md

README.md

Committed content

Staging and making a commit: step-by-step example

script.py

git add script.py
git commit -m "Initial commit for ..."

Step 2: add a new commit to
the repository.

Step 1: stage files to be part of the next commit.

c1 README.md

script.py
$ git log

commit 8190787daa6fca93f5f25b819716d50c31bf5c26

Author: Alice <alice@redqueen.org>

Date: Sun Feb 9 15:07:56 2020 +0100

Initial commit for test project

Commit history (after commit)

.git

doc

test_project

README.md

script.py

user_guide.pdf

tests

output.csv

$ git status

On branch main

Untracked files:

doc/

tests/

File status
(after commit)

Files that are part of the
Git index (tracked files)
with no modifications
(README.md, script.py)
are not listed.

.git [local Git repository]working tree

Working tree (actual files on disk) Git index (staging area)

README.md

Committed content

Staging and making a commit: step-by-step example

script.py

c1 README.md

script.py

git add doc/

doc/user_guide.pdf

c2 README.md

script.py

doc/user_guide.pdf

$ git status

On branch main

Changes to be committed:

new file: doc/user_guide.pdf

Untracked files:

tests/

File status (after staging)

Let’s add a new file to our repo: user_guide.pdf

$ git log
commit 04728026143ae57a71dcb7c1a503022041fb7d4d

Author: Alice <alice@redqueen.org>

Date: Fri Oct 11 09:53:05 2024 +0200

Add user guide

commit 8190787daa6fca93f5f25b819716d50c31bf5c26

Author: Alice <alice@redqueen.org>

Date: Fri Oct 11 08:43:15 2024 +0200

Initial commit for test project

Commit history (after commit)

git commit –m "Add user guide"

Important: once a version of a file was added to the Git index, it remains
there and will be part of the next commit (unless we explicitly remove it).
As long as a file is not modified, there is no need to stage it again.

Technical note: files that do not
change across commits are stored
only once: there is no wasteful
data duplication.

.git

doc

test_project

README.md

script.py

user_guide.pdf

tests

output.csv

.git [local Git repository]working tree

Working tree (actual files on disk) Git index (staging area)

README.md

Committed content

Staging and making a commit: step-by-step example

script.py

c1 README.md

script.py

doc/user_guide.pdf

git commit -m "Update script"

c2 README.md

script.py

doc/user_guide.pdf

An update was made
to script.py

git add script.py

To commit changes in script.py, we need to stage it again.

script.py [version 2]
c3

README.md

script.py [version 2]

doc/user_guide.pdf

tests/output.csv
tests/output.csv

$ git status

On branch main

Changes not staged for commit:

modified: script.py

Untracked files:

tests/

File status (before staging)

$ git status

On branch main

Changes to be committed:

modified: script.py

new file: tests/output.csv

File status (after staging)

.git

doc

test_project

README.md

script.py [version 2]

user_guide.pdf

tests

output.csv

git add tests/

$ git status

On branch main

Nothing to commit,

working tree clean

File status (after commit)

Clean working tree = state of files in the working
tree is the same as in the latest commit. If there are
changes, the working tree is said to be “dirty”.

.git [local Git repository]working tree

 By default, files in a directory under Git control are untracked.

 To include a file (in its current state) – or a change in file content – to the next commit,
the file must be added to the Git index (staged) with:

Summary: staging files (git add)

git add –u / --update # Stages all already tracked files, but ignore untracked files.
git add –A / --all # Stages all files/directories in the working tree (except ignored files), including file deletions.
git add . # Stages entire content of the current directory, except file deletions.

git add <file/directory> # Add the specified files/directories to the Git index.

 Multiple files/directories can be added in a single command (by passing multiple file/directory names).

 By default, the entire content of a file is added.
Adding only part of a file is possible with the --edit or --patch options.

 Staged files remain staged, unless explicitly removed (with git rm or git rm --cached).

 Modified files must be staged (added to the index) again, if the new content is to be added to the next commit.

 Some useful git add optionsgit add

Reminder:

commit = snapshot of the Git index

The Git index (staging area) can therefore be
thought of as a “virtual stage” where the
content of the next commit is prepared.

git commit -m/--message "your commit message"

git commit

$ git commit -m "Initial commit for test_project"

[main (root-commit) 8190787] Initial commit for test_project

3 files changed, 6 insertions(+)

create mode 100644 README.md

create mode 100644 script.py

create mode 100644 doc/quick_start.md

Example

Test project: testing version control with Git

A small test project to illustrate the use of Git.

Maybe I will add more content to it later.

#! /usr/bin/env python3

Quick-start guide for the test_project software

README.md

script.py

doc/quick_start.md

6 insertions = 6 lines added in total (across all files)

+ 1

+ 4 (empty lines also count)

+ 1

If no commit message is given, Git will open its
default editor and ask you to enter it interactively.

Summary: committing content (git commit)

git commit -m "commit message" <files or dirs> # Stage and commit the specified files/directories in a single command.
git commit --all -m "commit message“ # Stage and commit all modified tracked files in a single command.

Useful shortcuts:

--all is a shortcut for:

git add -u

git commit -m "commit message"

It will not stage/commit untracked files.

This is a shortcut for:

git add <file or dir>

git commit -m "commit message"

However, it's best if you:

 Make commits at meaningful points of your code/script development, for instance:

• When a new feature was added (or a few related functions).
• When a bug was fixed.

 Make multiple small commits instead of a large one if you are making changes that affect
different functionalities of your code (this can make it easier to e.g. revert changes).

 Don't commit broken code on your main/master branch, as this is the branch that others might
use to get the latest version of your code.
If you have partial work, you can commit it to a temporary/feature branch, and later merge it
into main/master (more on branch management will follow later).

Making commits: some advice

Git does not impose any restrictions on what and when things can be committed.

One exception being that, by default, commits with zero changes are not allowed, but they are possible by using
the --allow-empty option: git commit --allow-empty

Su
p

p
le

m
e

n
ta

ry
m

at
e

ri
al

…

$ git commit

Please enter the commit message for your changes. Lines starting

with '#' will be ignored, and an empty message aborts the commit.

#

On branch main

Changes to be committed:

new file: README.md

new file: script.py

new file: doc/quick_start.md

#

 In edit mode, you can now type
your commit message.

When no commit message is specified,
Git automatically opens a text editor.
By default, this editor is “vim”. Initial commit for test_project

 In the “vim” editor, press on the
key “i” to enter edit mode

Committing content: interactive commit message with the “vim” editor

Su
p

p
le

m
e

n
ta

ry
m

at
e

ri
al

…

Initial commit for test_project

This is the very first commit in this Git repo.

Way to go!

Please enter the commit message for your changes. Lines starting

with '#' will be ignored, and an empty message aborts the commit.

#

On branch main

Changes to be committed:

modified: README.md

new file: script.py

new file: doc/quick_start.md

#

~

~

 Commit message can be entered
over multiple lines.

 By convention, try to keep lines
reasonably short (<= 80 chars)

 Press “Esc” to exit “edit” mode.

[main (root-commit) 8190787] Initial commit for test_project

3 files changed, 6 insertions(+)

create mode 100644 README.md

create mode 100644 script.py

create mode 100644 doc/quick_start.md

Press “Enter” to exit vim and save
your commit message.

 You are now back in the shell and
your commit is done.

:wq
 Type “:wq” in the vim “command” mode.

Committing content: interactive commit message with the “vim” editor

 Initializing a new Git repo.

 Adding content to the Git repo.

 Making a commit with interactive commit message.

Demo

exercise 1 – part A

Your first commit

This exercise has helper slides

R
e

m
in

d
e

r…
Exercise 1 help: bash (shell) commands you may need during this course

cd <directory> Change into directory (enter directory).

cd .. Change to parent directory.

ls -l List content of current directory.

ls -la List content of current directory including hidden files.

pwd Print current working directory.

cp <file> <dest dir> Copy a file to directory “dest dir”.

mv <file> <new name> Rename a file to <new name>.

mv <file> <directory> Move a file to a different directory.

cat <file> Print a file to the terminal.

less <file> Show the content of a file (type “q” to exit).

vim <file> Open a file with the “vim” text editor.

nano <file> Open a file with the “nano” text editor.

Inspecting file status

git status

git diff

git status

Display file status

$ git status

On branch main

Changes to be committed:

(use "git restore --staged <file>..." to unstage)

new file: LICENSE.txt

modified: README.md

modified: script.py

deleted: test/test_output.csv

Changes not staged for commit:

(use "git add <file>..." to update what will be committed)

(use "git restore <file>..." to discard changes in working directory)

modified: README.md

modified: doc/user_guide.md

deleted: test/log.txt

Untracked files:

(use "git add <file>..." to include in what will be committed)

untracked_file.txt

Green = files with (changes in)
content (compared to the latest commit)

that has been staged and will be
part of the next commit.

Red = files with (changes in) content
(compared to the latest commit) that is
not staged. These changes will not

be part of the next commit.

Staged
files **

untracked
files

Note: the (new) content of a file can be partially staged: some changes in the file are staged (added to the index),
while some remain unstaged. This is the case in the example above for the README.md file (which is why it’s listed in
both the staged and unstaged sections). Only the staged content will become part of the next commit.

• * Modified files: files with changes in content as comparted
to the latest commit.

• ** Staged files that have not been modified since the last
commit (unmodified files) are not listed, but they are still in
the index and will be part of the next commit.

• Ignored files are also not listed.

new file = file is not present in latest commit.

modified = file is modified compared to latest commit.

deleted = file is present in latest
commit and will now be removed

modified = file is modified compared Git index.

deleted = file is deleted on disk, but is still present
in the Git index (and the latest commit).

Unstaged
files

M
o

d
ifie

d
 file

s *

Display the status of files in the working tree.

Su
p

p
le

m
e

n
ta

ry
m

at
e

ri
al

…
File status in Git: summary

 Untracked - file present in the project directory (working tree), but not currently under version control by Git. More
specifically, the file is not currently present in the Git index – but could be part of an earlier commit.

 Unmodified – the file is part of the latest commit * (and the Git index), and no change was made to the
file since then. In other words, the content of the file in the working directory (working tree) is the same
as in the latest commit. Unmodified files are not listed by the git status command.

* more precisely: the commit to which the HEAD pointer is currently pointing – this concept is explained later in the slides.

 Ignored - untracked file that is part of the repository’s “ignore list” (.gitignore or .git/info/exclude file).
Ignored files are not listed by the git status command.

Possible statuses for files in Git:

 Modified –the content of the file in the working directory (working tree) differs from the latest commit *.
Modified files can be staged, unstaged, or partially staged.

 Staged: the difference in content has been added the Git index (staging area), and will therefore be
committed with the next commit.

 Unstaged: the difference in content has not been staged (not part of the Git index), and will
therefore not be part of the next commit.

 Partially staged: some differences (but not all) have been staged (added to the Git index). Only the
staged differences will be part of the next commit.

 Tracked – file that is currently under version control. More specifically, it is currently part of the Git index (staging area)
and therefore also generally part of the latest commit *. Tracked files can be further categorized as:

Show differences between two states of a Git repo.

git diff <file> # show diff only for a specific file.

git diff --cached

git diff <commit 1 (older)> <commit 2 (newer)>

git diff --name-only # show only file names, not the changes.

Committed
content

git index
"staging area"

working tree
actual files on disk

git diff

git diff

--cached

B

C

D

git diff <A> <D>
A

git diff <C>

How do I know what changed and which changes are staged ?

$ git diff
diff --git a/README.md b/README.md

index f5e333d..844d178 100644

--- a/README.md

+++ b/README.md

@@ -1,2 +1,3 @@

Project description:

-This is a test

+This is a demo project

+and it's pretty useless

Example:
git diff

Inspecting commits and history

git show

git log

Display the “content” of a commit

Display the changes in file content introduced by a commit.

git show <commit reference>

git show

$ git show 89d201f

commit 89d201fd01ead6a499a146bc6da5aa078c921ecf

Author: Alice <alice@redqueen.org>

Date: Wed Feb 19 14:00:02 2020 +0100

Add stripe color option to class Cheshire_cat

diff --git a/script.sh b/script.sh

index d7bfdc8..fa99250 100755

--- a/script.sh

+++ b/script.sh

@@ -7,13 +7,28 @@

def Cheshire_cat():

- def __init__(self, name, owner=“red queen”):

+ def __init__(self, name, owner=“red queen”, stripe_color=“orange”):

+ self.stripe_color = stripe_color

Example:

with no argument, the latest commit on the current branch is shown (i.e. HEAD)

Examples of commit references:

 A commit ID (hash): 89d201f
 A branch name: develop
 A tag name: 1.0.7
 The HEAD pointer.
 A relative reference: HEAD~3

If no commit reference is given, HEAD
is used as default.

$ git show --name-only 89d201f
commit 89d201fd01ead6a499a146bc6da5aa078c921ecf

Author: Alice <alice@redqueen.org>

Date: Wed Feb 19 14:00:02 2020 +0100

Add stripe color option to Cheshire_cat

script.sh

git show --name-only <ref>

Only display file names (without the changes)

git show

The detail of changes can only be shown
for plain text files.

Display commit history

git log

git log --oneline

git log --all --decorate --oneline --graph

$ git log

commit f6ceaac2cc74bd8c152e11b9c12ada725e06c8b9 (HEAD -> main, origin/main)

Author: Alice alice@redqueen.org

Date: Wed Feb 19 14:13:30 2020 +0100

Add stripe color option to class Cheshire_cat

commit f3d8e2280010525ba29b0df63de8b7c2cd7daeaf

Author: Alice alice@redqueen.org

Date: Wed Feb 19 14:11:56 2020 +0100

Fix off_with_their_heads() so it now passes tests

commit cfd30ce6e362bb4536f9d94ef0320f9bf8f81e69

Author: Mad Hatter mad.hatter@wonder.net

Date: Wed Feb 19 13:31:32 2020 +0100

Add .gitignore file to ignore script output

Example: default view (detailed commits of current branch).

git log has many options
to format its output.

See git log --help
Print the commit history of the repository, newest commit to oldest (i.e. newest commit at the top)

$ git log --oneline
f6ceaac (HEAD -> main, origin/main) peak_sorter: add authors to script

f3d8e22 peak_sorter: display name of highest peak when script completes

cfd30ce Add gitignore file to ignore script output

f8231ce Add README file to project

821bcf5 peak_sorter: add +x permission

40d5ad5 Add input table of peaks above 4000m in the Alps

a3e9ea6 peak_sorter: add first version of peak sorter script

Example: compact view of current branch

$ git log --all --decorate --oneline --graph
* fc0b016 (origin/feature-dahu, feature-dahu) peak_sorter: display highest peak at end of script

* d29958d peak_sorter: add authors as comment to script

* 6c0d087 peak_sorter: improve code commenting

* 89d201f peak_sorter: add Dahu observation counts to output table

* 9da30be README: add more explanation about the added Dahu counts

* 58e6152 Add Dahu count table

| * f6ceaac (HEAD -> main, origin/main) peak_sorter: add authors to script

| * f3d8e22 peak_sorter: display name of highest peak when script completes

|/

* cfd30ce Add gitignore file to ignore script output

* f8231ce Add README file to project

| * 1c695d9 (origin/dev-jimmy, dev-jimmy) peak_sorter: add check that input table has the ALTITUDE and PEAK columns

| * ff85686 Ran script and added output

|/

* 821bcf5 peak_sorter: add +x permission

* 40d5ad5 Add input table of peaks above 4000m in the Alps

* a3e9ea6 peak_sorter: add first version of peak sorter script

Example: compact view of entire repo (all branches)

Su
p

p
le

m
e

n
ta

ry
m

at
e

ri
al

…

Adding custom shortcuts to Git

Some git commands can be long and painful to type, especially when you need them often!
To shorten a command, you can create custom aliases:

git config --global alias.<name of your alias> "command to associate to alias"

Example:

git config --global alias.adog "log --all --decorate --oneline --graph"

With the alias set, you can now simply type:

git adog

Editing the Git index
(staging area)

Summary: removing content from the Git index

git reset HEAD <file> # Remove newly staged content of a specific file.
git reset HEAD # Remove all newly staged content (all files).

 Remove newly staged content from the index (one file at a time).

work tree git index

xxxxxxx
xxxxxxx

xxxxxxx

xxxxxxx
xxxxxxx

xxxxxxx

 Rename and/or move files both in the working tree and the Git index.

git mv <file> <new location/new name>

old-name

new-name

old-name

new-name

git restore --staged <file> # Remove newly staged content of the specified file.

The same can also be achieved using the git reset command. This is a specific use of
the reset command, which has a wider scope.

Useful to unstage all changes in a single command.

git rm --cached <file> # Delete file from index only.
git rm <file> # Delete file from both index and working tree.

 Delete entire files from the index and the working tree.

Without the --cached option => deletes file in working tree (i.e. on disk) !

Without the --staged option => resets file in work tree to the its version in the Git index.

Note: the git restore command is available from Git >= 2.23

Working tree (actual files on disk) Git index (staging area)

README.md

Committed content

.git, local Git repositoryworking directory

Removing content from the Git index: example

script.py

c1 README.md

script.py

doc/user-guide.pdf

c2 README.md

script.py

doc/user-guide.pdf

Scenario: an update was made to user-guide.pdf and script.py. We want to commit the new version of
user-guide.pdf (version 2), but not the changes to script.py and not notes.md .

git add --all

script.py [version 2]

c3
README.md

script.py [version 2]

doc/user-guide.pdf

tests/output.csv

tests/output.csv

.git

doc

test-project

README.md

script.py [version 3]

notes.md

user-guide.pdf [version 2]

tests

output.csv
notes.md

doc/user-guide.pdf [version 2]

script.py [version 3]

$ git status

On branch main

Changes to be committed:

modified: doc/user-guide.pdf

modified: script.py

new file: notes.md

File status after git add --all

The version of script.py
in the index is restored to
the version from the latest
commit*.

Since notes.md is not present in the
latest commit*, the whole file gets

removed from the index.

* more precisely: the commit to which the HEAD is currently pointing,
usually the latest commit on the current branch.

git restore --staged notes.md

git restore --staged script.py

Without --staged , this resets the file in the
working tree to its version from the index.

git restore script.py
2

2

$ git status

Changes to be committed:

modified: doc/user-guide.pdf

Changes not staged for commit:

modified: script.py

Untracked files:

notes.md

File status after git restore

Working tree (actual files on disk) Git index (staging area)

README.md

Committed content

.git, local Git repositoryworking directory

Removing content from the Git index: example

script.py [version 2]

c1 README.md

script.py

doc/user-guide [version 2].pdf

c2 README.md

script.py

doc/user-guide.pdf

Scenario: at this point we realize that we would also like to stop tracking tests/output.csv in our repo.

c3
README.md

script.py [version 2]

doc/user-guide.pdf

tests/output.csv

tests/output.csv

.git

doc

test-project

README.md

script.py [version 3]

notes.md

user-guide.pdf [version 2]

tests

output.csv

$ git status

Changes to be committed:

modified: doc/user-guide.pdf

Changes not staged for commit:

modified: script.py

Untracked files:

notes.md

tests/output.csv

File status after git rm --cached

Removes the file from both the
index and the working tree.

git rm test/output.csv

Removes output.csv (entirely)
from the Git index.

git rm --cached test/output.csv

$ git status

Changes to be committed:

modified: doc/user-guide.pdf

Changes not staged for commit:

modified: script.py

Untracked files:

notes.md

File status after git rm test/output.csv

Working tree (actual files on disk) Git index (staging area)

README.md

Committed content

.git, local Git repositoryworking directory

Removing content from the Git index: example

script.py [version 2]

c1 README.md

script.py

doc/user-guide [version 2].pdf

c2 README.md

script.py

doc/user-guide.pdf

c3
README.md

script.py [version 2]

doc/user-guide.pdf

tests/output.csv

.git

doc

test-project

README.md

script.py [version 3]

notes.md

user-guide.pdf [version 2]

tests

c4
README.md

script.py [version 2]

doc/user-guide.pdf [version 2]

git commit -m "Update user guide for v2"

We can see that output.csv is no longer tracked, but it remains part of the history of our repo.

$ git ls-files

README.md

script.py

doc/user-guide.pdf

This command lists all files part of the repo’s history

$ git log --pretty=format: --name-only --diff-filter=A | sort -u

README.md

script.py

doc/user-guide.pdf

tests/output.csv

What if this was a file that contains sensitive data
we want to completely purge from the repo (e.g.
a leaked password) ?

output.csv

remains in the
repository’s
history and can
be recovered if
needed.

Working tree (actual files on disk) Git index (staging area)

README.md

Committed content

.git, local Git repositoryworking directory

Retrieving a file from the Git repo: example

script.py [version 2]

c1 README.md

script.py

doc/user-guide [version 2].pdf

c2 README.md

script.py

doc/user-guide.pdf

c3
README.md

script.py [version 2]

doc/user-guide.pdf

tests/output.csv

.git

doc

test-project

README.md

script.py [version 3]

notes.md

user-guide.pdf [version 2]

tests

c4
README.md

script.py [version 2]

doc/user-guide.pdf [version 2]

I would now like to retrieve the file output.csv from the Git repository.

tests/output.csv

git restore --source=c3 --staged

tests/output.csv

To restore a file in both the working tree and the index at the same time, you can use:
(both commands produce the same result)

git checkout c3 tests/output.csv

git restore --source=c3 --worktree --staged tests/output.csv

When neither --worktree nor --staged is
passed as argument, --worktree is used as default.

output.csv

git restore --source=c3 tests/output.csv

$ git status

On branch main

Changes to be committed:

(use "git restore --staged <file>..." to unstage)

modified: user-guide.pdf

Changes not staged for commit:

(use "git add <file>..." to update what will be committed)

(use "git restore <file>..." to discard changes in working directory)

modified: script.py

Untracked files:

(use "git add <file>..." to include in what will be committed)

notes.md

tests/output.csv

OMG ! How will I remember all these fantastic commands ??

The git status command provides helpful hints on how to stage/unstage files.

Warning: without the --staged option, git
restore will reset (overwrite) the file in the
working tree with the version of the file from
the Git index.

Only run it if you intend to delete the current
version of your file.

ignoring untracked files

.gitignore

.git/info/exclude

Ignoring files

 By default, files that are not added to a Git repo are considered untracked, and are always listed as such
by git status .

 To stop Git from listing files as untracked, they can be added to one of the following "ignore" files:

.gitignore

 Files to ignore are added by manually editing the two above-mentioned files.

 Files can be ignored based on their full name, or based on glob patterns (see next slide for examples).

• *.txt ignore all files ending in ".txt"
• *.[oa] ignore all files ending either in ".o" or ".a"
• logs/ appending a slash indicates a directory. The entire directory and all of its content are ignored.
• !dontignorethis.txt adding a ! In front of a file name means it should not be ignored (exception to rule).

 For files to be ignored by every copy of the repository.

 .gitignore is meant to be tracked: git add .gitignore

 Examples:
• outputs of tests
• .Rhistory, .RData
• .pyc (compiled version of python code)

Most of the time, this is
the method you will want
to use to ignore files.

.git/info/exclude

 For files that should be ignored only by
your own local copy of the repository.

 Not versioned and not shared.

 Examples:
• Files with some personal notes.
• Files specific to your development

environment (IDE).
Use this method for special
cases where a file should
only be ignored in your
local copy of the repo.

my_tests.py

.Rdata

.Rhistory

*.pyc

test_outputs/

Example of a .gitignore file

Su
p

p
le

m
e

n
ta

ry
m

at
e

ri
al

…
Ignoring files: example

.git

src

test_project

.gitignore

.gitignore

module.py

module.pyc

info

exclude

my_tests.py

*.my_ide

*.a

large_data/

*.log

!main.log

*.pyc

 There can be multiple .gitignore
files per project, to create custom per-
directory ignore rules.

 Ignore rules in sub-directories are
inherited from the .gitignore of
their parent directory(ies).

 The .gitignore files themselves
should not be ignored: add them to
the Git repo so they are tracked.

ignored in entire project.

files ignored only in the /src
sub-directory.

testrun.log

main.log

test_project.my_ide

red = ignored file.

large_data

compiled.a

 Order (sometimes) matters: here the
rule to not ignore main.log must be
placed after the general rule to ignore
*.log files.

files ignored only in my
local copy of the repo.

This file is a config for an IDE software.
It is of no use to others. This is why it is
ignored in .git/info/exclude

Demo

 Ignoring files with .gitignore

exercise 1 – part B and C

Your first commit

A detailed look at commits

Introducing SHA-1

 SHA-1 stands for Secure Hashing Algorithm 1.

 This algorithm turns any binary input into an (almost*) unique 40 character
hexadecimal hash/checksum value (hexadecimal = base 16 number, 0-9 + a-f).

e83c5163316f89bfbde7d9ab23ca2e25604af290

 Important: for a given input, SHA-1 always computes the exact same and (almost*) unique hash.

 Example: running "This is a test" through the SHA-1 algorithm, will always produce the hash
shown below:

echo "This is a test" | openssl sha1 3c1bb0cd5d67dddc02fae50bf56d3a3a4cbc7204

* With current hardware, SHA-1 collisions can be reasonably easily created. SHA-1 is no longer considered secure for cryptographic purposes,
but is good enough for usage in Git. It is also fast to compute.

echo "This is a Test" | openssl sha1 7500c6645cb9cdb20b32002cb82bbe067cc77d6e

Commits: immutable snapshots of a repository’s state

 A commit represents the state of a repository at a given time => snapshot of Git index + metadata.

 A commit is the only way to enter a change into a Git repository.
This enforces accountability as you cannot have untraceable modifications.

 Each commit has an associated author, committer, commit message and date - this enforces documentation.

 Commits are lightweight:

• They do not contain the tracked files’ data, only a reference to the data (specifically, a Tree* object that represents
the state of the Git index at the time the commit was made).

 Commits contain a reference to their parent commit.

* Tree = reference to the state of all files at a given time point = snapshot of repository state.

Each commit is uniquely identified by
a commit ID: a SHA-1 hash/checksum
computed on all its metadata.

Author: Mad Hatter
Committer: Alice
Commit msg: Fix bug in CheshireCat()
Date: 24.02.2020 10:43
Tree:

Parent: 57dc232

Content of a commit

815de0aff2e7b3a6ab90e967102b9745594be7e3SHA-1

commit ID

e5d56fa

Su
p

p
le

m
e

n
ta

ry
m

at
e

ri
al

…
 Commits contain a reference to the top “Tree object” – a table linking file names and hashes

of the Git index at the time the commit was made. This is a “snapshot” of the index, and is how Git
can retrieve the state of every file at a given commit.

 Commits point to their direct parent – forming a DAG (directed acyclic graph) where no commit
can be modified without altering all of its descendants.

Author: Mad Hatter
Committer: Alice
Commit msg: Fix bug in function foo()
Date: 24.02.2020 10:43
Parent:

Tree: 57dc232

815de0acommit

main.py

fun.py

README.md

LICENSE.txt

src/

f5e333d blob

tree
(src/ directory)

b028233

dd598fe

ba2906d

38405c6

57dc232Top tree (root directory)

38405c6

blob

blob

blob

Tree object
Table linking file/subdirectory names to hashes of the content of files (blobs).

The “top tree” is the table for the root directory of the repo, it represents a
snapshot of the Git index at the time a commit was made.

45d56fa

Top tree

45d56facommit

Author: …
Committer: …
Commit msg: …
Date: …
Parent:

Tree: 28ad171

28ad171

fe3306a

fe3306aroot commit

Author: …
Committer: …
Commit msg: …
Date: …
Parent: none
Tree:

Top tree bd654b1

bd654b1

If two commits have the same ID,
their content is identical !

If two commits have the same ID,
their entire history is identical !

 Because of how a commit ID is computed,
commits are immutable: once a commit is
made, it cannot be modified without its
commit ID being modified too - which would
then make it a different commit !

 Modifying a commit will modify all of its
descendants. It creates a completely new
history of the Git repo.

 This ensures the integrity of a Git repository’s
history, something that is important due to the
distributed nature of Git. It can be seen as a
sort of blockchain.

A

B

C

0f1c3bc

b1241f5

ae7c31a

57dc232

ba08242

D

E

F c3738a7

A

G

C'

0f1c3bc

f454df5

34e7e13

987fd34

023ee33

D'

E'

F' ae06ff2

Small
change in
commit

Examples of things that change a commit’s ID:

• Changing the content of a file.
• Changing the time a commit was made.
• Changing the parent commit of a commit.

Su
p

p
le

m
e

n
ta

ry
m

at
e

ri
al

…

As counter-intuitive as
it may sound, Git stores
a complete copy of
each file version. Not
just a diff.

What ??

Yes! It may not be space
efficient, but it’s fast :-)

--- version2 diff

+++ version3 diff

+ Yes! It may not be space
+ efficient, but it’s + fast :-)

As counter-intuitive as
it may sound, git stores
a complete copy of
each file version. Not
just a diff.

--- version1 diff

+++ version2 diff

+ What ??

version1

 Git stores a complete copy of each file’s version*.

 Optimized for speed rather than disk space
preservation.

 Sub-optimal for tracking large files, as they will
quickly inflate the size of the .git repo.

Git versioning

A

B

C

most VCS versioning

What ??

Yes! It may not be space
efficient, but it’s fast :-)

What ??

As counter-intuitive as
it may sound, Git stores
a complete copy of
each file version. Not
just a diff.

As counter-intuitive as
it may sound, Git stores
a complete copy of
each file version. Not
just a diff.

As counter-intuitive as
it may sound, Git stores
a complete copy of
each file version. Not
just a diff.

version2

version1

version3

SHA1 – e78bf23…

SHA1 – 8fb24d3…

SHA1 – 27da79b…

Git versioning

* At least for a while - at some point Git also stores things as diffs, see "packfiles".

Su
p

p
le

m
e

n
ta

ry
m

at
e

ri
al

…
Git packfiles: compressing old history

• Differences between similar files are stored as diffs.

• Multiple files are compressed into a single “packfile” (.pack extension).

• Each packfile has an associated packfile index (.idx extension), that
associates filenames to blobs.

 For older commits, Git uses a few tricks to decrease disk space usage:

The HEAD pointer

HEAD: a pointer to the most recent commit on the currently active branch

HEAD pointer Local branch name

Commit ID (SHA1 hash)

Here shown in a shortened
form (7 first chars).

Looking at the output of git log , we see a HEAD -> label: this shows the position of the HEAD pointer.

Remote branch name

First line of commit message

HEAD: a pointer to the currently checked-out branch/commit

Another way to look at it, is that HEAD always points to the parent of your next commit.

 HEAD is – most of the time – a pointer to the latest commit on your current branch.
(Sometimes it is also described as a pointer to the current branch – which is itself a pointer to the latest commit on the branch)

 The HEAD position is how Git knows what is the currently “active” branch.

 New commits are added “under” the current HEAD, i.e. a new commit is the “child” of the commit pointed-to by HEAD.

 When a new commit is added, HEAD is automatically moved by Git to point to that new commit.

devel

HEADmain

devel

HEADmain

git commit git switch devel

develHEAD

main

Next commit

Next commit

Su
p

p
le

m
e

n
ta

ry
m

at
e

ri
al

…
Relative references to commits

Ref~X refers to the Xth generation before the commit: ~1 = parent, ~2 = grand-parent, etc.
Ref~ is a shortcut for Ref~1

 Using ~ and ^ symbols, Git allows to refer to a commit by its position relative to another commit, rather

than by its absolute hash.

 Ref can be any reference, such as HEAD, a commit hash, a branch name, or even another Ref.

Ref^X refers to the Xth direct parent of the HEAD commit (but most commits have only a single parent).
Ref^ is a shortcut for Ref^1

HEAD

HEAD~ / HEAD~1 / HEAD^ / HEAD^1

HEAD~2

HEAD~3 / 57d33a1~2 / 23b11a7~3

HEAD^2

HEAD~2

HEAD~3

HEAD^1

HEAD^2~1

HEAD^2~2

HEAD

Relative to another Ref17dc23c

ba08242

c3738a7

57d33a1

23b11a7

Relative to an absolute hash

Part II

Git branches
Managing multiple lines of development

new-feature

Why branches? An illustration with a data quality-control pipeline project

 Branches isolate new changes (work in progress) from the
main line of development (stable code).

 Branches isolate changes from different people collaborating
on a same project (so changes made by Alice do not impact Bob, at

least not immediately).

 On online repos, branches can be protected so that only
selected people can add commits to it.
Use case: Bob just started to work on our project, so he is not allowed to
make changes to the “main” branch.

Main development line of project.
This is the version of the data
quality-control pipeline used in
production.

main

Branch where you work
on a new feature

Version of code
used in production

Pre-production version of the
data quality-control pipeline.

develop

bob-test

Branch where your colleague Bob
is “you know…just testing stuff…”
(don’t worry, it’s not on the
production branch :-)

Branch where the next production-
ready version of the data quality-

control pipeline is prepared.

“Branching” means to diverge from the main line of development.

Git is designed to encourage branching: branches are “cheap” (don’t take much disk space) and switching between them is fast.

The main branch is no special branch. It is simply the default name given to
the branch created when initializing a new repo [git init]. It has become
a convention to use this branch as the stable version of a project.

Note: in earlier versions, the “main” branch used to be called the “master” branch.

What are branches?

 A branch is just a pointer to a commit.

 A branch is very lightweight (41 bytes).

 By convention, the main/master branch is the branch representing the stable
version of your work.

 To know which is the currently active branch, Git uses the HEAD pointer. The
HEAD pointer always points to the currently active branch (except for the special

case of “detached HEAD” mode, discussed later in the second part of this course).

 New commits are always added at the top of the currently active branch*.

Spaces and some characters such as ,~^:?*[]\ are not allowed in branch
names. It is strongly recommended to stick to lowercase letters, numbers
and the “dash” character [–].

Illegal characters in branch names

main

new-feature

bug-fix

HEAD

old-feature

The HEAD
pointer indicates
the currently
active branch.

❯ ls -l .git/refs/heads/*

-rw-rw-r-- 1 41 Feb 1 .git/refs/heads/devel

-rw-rw-r-- 1 41 Feb 1 .git/refs/heads/main

❯ cat .git/refs/heads/main

8508bc698498861c036636dba40ac28b6c7f3a7a

❯ cat .git/refs/heads/devel

4aefde0735e0f95de9969fa660265f71d6a95ebd

❯ ls -l .git/HEAD

-rw-rw-r-- 1 21 Feb 1 .git/HEAD

❯ cat .git/HEAD

ref: refs/heads/main

Switching and creating new branches

main
HEAD

a b c

main

dev

HEAD

a b c

main

dev
HEAD

a b c

git branch dev

git switch -c dev

git switch -c <branch name>

git switch dev

The -c option is to create and switch
to the new branch immediately.

git branch <branch name>Create a new branch:

Create a new branch and switch to it:

git switch <branch name>Switch to another branch:

git checkout <branch name>

git checkout -b <branch name>

The git switch command was introduced in Git version 2.23 as an replacement to git checkout for switching branches. This was done because the checkout command already
has other uses (e.g. to extract older files from the Git database), and it was deemed confusing that a same command would have multiple usages. It remains nevertheless possible to switch

branches with the git checkout command in recent Git versions.

switch vs. checkout

On older Git versions the git switch command
does not exist.
Instead, git checkout is used to switch branches:

Switching and creating new branches (continued)

git branch <branch name> <reference>Create a new branch:

Create a new branch and switch to it: git switch -c <branch name> <reference>

Reference to a commit, branch or tag.
The default reference is HEAD.

 By default new branches are created at the current position of the HEAD pointer (i.e. the current commit).

 But they can be created at any specified reference.

git branch

backport 57d33a1
main

dev HEAD

57d33a1

git switch -c

bug-fix main

backport

main

dev HEAD

57d33a1

bug-fix

backport

main

dev

HEAD

57d33a1

Example: Note: HEAD was
moved, because we
switched to the newly
created branch.

List branches and identify the currently active branch

git branch

git branch -a

List local branches

List local and remote branches

$ git branch

devel

* main

new-feature

$ git branch -a

devel

* main

new-feature

remotes/origin/main

remotes/origin/devel

The * denotes the currently checked-
out (active) branch. Generally it is
displayed in green.

Examples

Remote branches (to be precise, pointers to remote
branches) are shown in red and are named
remotes/<remote name>/<branch name>

As a handy alternative, “git adog” (git log --all --decorate --oneline --graph) will also show all branches.
The currently active branch can be identified as it has the HEAD pointing to it.

Su
p

p
le

m
e

n
ta

ry
m

at
e

ri
al

…
What happens in the working tree when switching branches

❯ ls -l

4096 Jan 29 22:45 user_guide.md

108 Jan 29 22:30 personal_notes.md

53 Jan 29 22:30 README.md

77 Jan 29 22:45 script.py

 When switching to different branch, the content of your working directory (working tree) is updated as to reflect the state
of the commit the active branch (i.e. the branch you just switched to).

 This means that when switching branches, you can have files appear/disappear or be modified in your working directory.

 A copy of committed files is kept at all times in the .git database so they can be restored when switching branches.

dev

main

HEAD Untracked files (here in red) are
unaffected by branch switches.

#!/usr/bin/env python3

print("Hello World")

print("Git branches are great")

git switch main❯ ls -l

108 Jan 29 22:30 personal_notes.md

53 Jan 29 22:30 README.md

45 Jan 29 22:43 script.py

dev

main HEAD

What has changed:
• user_guide.md has disappeared…
• script.py was reverted to the older version…

Size and last modified date has changed!

#!/usr/bin/env python3

print("Hello World")

❯ ls -l

4096 Jan 29 22:45 user_guide.md

108 Jan 29 22:30 personal_notes.md

53 Jan 29 22:30 README.md

77 Jan 29 22:45 script.py

dev

main

HEAD
What has changed:
• user_guide.md is back.
• script.py reverted to newer version. git switch dev

Su
p

p
le

m
e

n
ta

ry
m

at
e

ri
al

…

What if you have uncommitted changes ?

 If the changes do not conflict between the branches, they are “carried-over” with the switch.

git switch dev

dev

main HEAD

Git demo project

Demo for the `git switch` command.

This is a new uncommitted line

README.md (on main)

Git demo project

Demo for the `git switch` command.

README.md (on dev)

Git demo project

Demo for the `git switch` command.

This is a new uncommitted line

README.md (on dev)

The uncommitted changes are carried-
over to the newly active branch.

 If the changes conflict between the branches, Git will not allow you to switch.

Possible solutions

 Make a commit on main with your changes before switching to dev.
 Use git stash (see 2nd part of this course).
 Revert changes on script.py (Warning: changes are lost for good!):
git restore script.py

#!/usr/bin/env python3

print("Hello World")

print("Git branches are great")

#!/usr/bin/env python3

print("Hello World")

print("This is uncommitted")

script.py (on main)

script.py (on dev)

git switch dev

❯ git switch dev

error: Your local changes to the following

files would be overwritten by checkout:

script.py

Please commit your changes or stash them

before you switch branches.

Aborting

These two lines
are conflicting.

What happens in the working tree when switching branches

 What happens in the working directory when switching branches

Demo: git switch

git merge
get branches back together

Branch merging

 Merge: incorporate changes from the specified branch into the currently active (checked-out) branch.

git merge feature

git merge <branch to merge into the current branch>

a

b

c

d

e

f

g

h main
feature

HEAD

Before running the command, make sure that the branch into which the changes
should be merged is the currently active branch.
If not, use git switch <branch> to checkout the correct branch.

feature

a

b

c

d

e

f

g

h

main

HEAD feature

a

b

c

d

e

f

g

h

main HEAD

git switch main

Example: merge changes made on branch feature into the branch main.

57dc232

ba08242

c3738a7

57dc232

ba08242

c3738a7

The active branch is “main”.
We can now merge “feature”
into “main”.

My active branch is
“feature”, so I need to
switch to “main”

Merging has not made any
changes to my commit history.
All my commits remain the
same (no change in hash).

At this point, the "feature"
branch can be deleted.
git branch –d feature

Two types of merges

Fast-forward merge

feature

a

b

c

d

e

f

g

h

a

b

c

d

e

f

g

h main *
feature

 3-way merge: when branches have diverged. This introduces an extra “merge commit”.

git merge feature

 Guaranteed to be conflict free.

main *

3-way merge (non-fast-forward)

* main feature

a

b

c

d

e

f

g

h
feature

a

b

c

d

e

f

g

h

i main *

 Creates an additional “merge commit” (has 2 parents).
 Conflicts may occur.

git merge feature

Additional “merge”
commit is created.

* denotes the currently active (checkout-out) branch.

The branch that is being merged (here feature) is rooted on the latest commit of the branch that it is being merged into (here main).

 Fast-forward merge: when branches have not diverged.

The common ancestor of the 2 branches is not the last commit of the branch we merge into (here main).

Common
ancestor

Conflicts in 3-way merges (non fast-forward)

* main dev-alice

a

b

c

d

e

f

g

h

Common
ancestor

If a same file is modified at (or around) the same place in the two branches being merged, Git cannot decide
which version to keep. There is a conflict, and you need to manually resolve it.

Tea pot quality-control pipeline

Check and approve tea pots for use in

unbirthday parties.

Authors: Mad Hatter, Alice

Date modified: 2022 Oct 11

Step 1: physical integrity check

* Check exterior for cracks and uneven

painting.

* Check for mice inside of pot.

Step 2: tea-brewing integration test

* Brew tea for 7 min.

* Add 2 cubes of sugar.

* Probe tea.

* Make sure we still have no idea why

a raven is like a writing desk.

Tea pot quality-control pipeline

Check and approve tea pots for use in

unbirthday parties.

Authors: Mad Hatter, Red Queen

Date modified: 2022 Oct 10

Step 1: physical integrity check

* Check exterior for cracks and uneven

painting.

* Check for mice inside of pot.

* Verify the Mad Hatter is on time.

Step 2: tea-brewing integration test

* Brew tea for 7 min.

* Add 2 cubes of sugar.

* Probe tea.

README.md version of main branch. README.md version of dev-alice branch.

$ git merge dev-alice

Auto-merging README.md

CONFLICT (content): Merge conflict in README.md

Automatic merge failed; fix conflicts and then commit the result.

File with conflicts that need to be manually solved.

Let’s merge dev-alice into main…

Story background: the Red Queen has
just merged changes from her branch
dev-redqueen into main.
Now Alice wants to merge her branch
dev-alice into main.

dev-redqueen

4. Stage the conflict-resolved file(s).
5. Commit

Resolving conflicts

Tea pot quality-control pipeline

Check and approve tea pots for use in

unbirthday parties.

<<<<<<< HEAD

Authors: Mad Hatter, Red Queen

Date modified: 2022 Oct 10

=======

Authors: Mad Hatter, Alice

Date modified: 2022 Oct 11

>>>>>>> dev-alice

Step 1: physical integrity check

* Check for mice inside of pot.

* Verify the Mad Hatter is on time.

Step 2: tea-brewing integration test

* Brew tea for 7 min.

* Add 2 cubes of sugar.

* Probe tea.

* Make sure we still have no idea why a

raven is like a writing desk.

Tea pot quality-control pipeline

Check and approve tea pots for use in

unbirthday parties.

Authors: Mad Hatter, Red Queen, Alice

Date modified: 2022 Oct 11

Step 1: physical integrity check

* Check for mice inside of pot.

* Verify the Mad Hatter is on time.

Step 2: tea-brewing integration test

* Brew tea for 7 min.

* Add 2 cubes of sugar.

* Probe tea.

* Make sure we still have no idea why a

raven is like a writing desk.

$ git merge dev-alice
Auto-merging README.md

CONFLICT (content): Merge conflict in README.md

Automatic merge failed; fix conflicts and then commit the result.

File with conflicts
1. Open the conflicting files in the text editor of your choice.

2. Look for the text between <<<<<<< and >>>>>>> .
There can be more than one of such sections, if there is more than one conflict in the file.

 The text between <<<<<<< and ======= is the version of the current branch, i.e. the branch into which we merge (main, in this example).
 The text between ======= and >>>>>>> is the version from the branch we are merging (dev-alice, in this example).

3. Manually edits
the file(s)…Version from the current

branch (here main).

Version from branch being
merged into the current
branch (here dev-alice).

Note: there is no conflict
for these 2 lines, because

the edits were made at
different locations in the

file. Git is able to auto-
merge such changes.

$ git add README.md

$ git commit

[main a317d38] Merge branch ‘dev-alice'

Hash of the added
“merge” commit.

An editor will open with a pre-
set commit message. You can
accept it as is, or modify it.

Resolving conflicts: if you get lost…

$ git status

On branch main

You have unmerged paths.

(fix conflicts and run "git commit")

(use "git merge --abort" to abort the merge)

Unmerged paths:

(use "git add <file>..." to mark resolution)

both modified: README.md

$ git status

On branch main

All conflicts fixed but you are still merging.

(use "git commit" to conclude merge)

Changes to be committed:

modified: README.md

 If you are lost at some point, run git status and it will give you some hints and commands.

 A merge can be aborted at anytime with

 Completed merges can be reverted (with the git reset commands – see the “git advanced” slides).

git merge --abort

Running git status before conflicts
are resolved in the file.

Running git status after conflicts are
resolved in the file and the file was staged.

Examples

Git tells you what to do and
reminds you of commands.

Git tells you what to do and
reminds you of commands.

Su
p

p
le

m
e

n
ta

ry
m

at
e

ri
al

…
What’s in a merge commit ?

$ git show HEAD

commit 10fa3ad505821b0ea628b811143af47343a4d8dc (HEAD -> main)

Merge: 7446b3e b4fb462

Author: Red Queen <off.with.their.heads@wonder.org>

Date: Tue Oct 11 15:16:39 2022 +0200

Merge branch 'dev-redqueen'

$ git show HEAD

commit a317d38448dae4e6bd9b4862dcaccf4e416cc46c (HEAD -> main)

Merge: 10fa3ad 7999c7c

Author: Alice <alice@redqueen.org>

Date: Tue Oct 11 15:27:35 2022 +0200

Merge branch 'dev-alice'

diff --cc README.md

index 647be0c,74edef5..3ce8aa7

--- a/README.md

+++ b/README.md

@@@ -1,8 -1,8 +1,8 @@@

Tea pot quality-control pipeline

Check and approve tea pots for use in unbirthday parties.

- Authors: Mad-Hatter, Red Queen

- Date modified: 2022 Oct 10

- Authors: Mad-Hatter, Alice

++Authors: Mad-Hatter, Red Queen, Alice

+ Date modified: 2022 Oct 11

Step 1: physical integrity check

* Check exterior for cracks and uneven

dev-alice

a

b

c

d

e

f

g

h

i main *merge commit.

If there was no conflict, the merge commit contains
nothing but the commit message (and other metadata).

If there was a conflict, the merge commit contains the
conflict resolution changes made to the conflicted file(s).

 Merging branches (fast-forward and 3-way merge)

Demo

Deleting branches

Branches that are merged and are not used anymore can (should) be deleted.

git branch -d <branch name>

git branch -D <branch name>

safe option: only lets you delete branches that are fully merged.

YOLO option: lets you delete any branch.

The 'bugfix' and 'old' branches are fully merged.

$ git branch -d bugfix

Deleted branch bugfix (was bd898dc)

$ git branch -d old

Deleted branch old (was 75d3fed)

Trying to delete a non-merged branch with -d will fail:

$ git branch –d new-feature

error: The branch 'testing' is not fully merged.

If you are sure you want to delete it, run 'git branch -D testing'.

Using -D will allow deletion of a non-merged branch:

$ git branch –D new-feature

Deleted branch new-feature (was f2a898b)

 Note: A currently active (checked-out) branch cannot be deleted.
You must switch to another branch before deleting it.

a

b

c

d

e

f

g

h

i main

bugfix

a

b

c

d

e

f

g

h

i main

new-feature

k

n

old

Example

Deleted a branch by mistake ? – no panic !
This hash can be used to re-create it:
git branch new-feature f2a898b

Commands from
“Example” box

Branch management: best practices

main

dev

feature
 Use branches to develop and tests new changes to your

code/scripts - don’t test directly on main.

 Don’t hesitate to create branches, they are “cheap” (they
don’t add any overhead to the git database).

 Delete branches that are no longer used.

Don’t change the history on the main branch if your project is used by others.

Su
p

p
le

m
e

n
ta

ry
m

at
e

ri
al

…
Branch management strategies: GitFlow vs. trunk-based development

new-feature-1

Main development line of project.
This is the version of the data quality-
control pipeline used in production.

main/master

Branch where
Alice is working

on a new feature.

Version of code
used in production

Pre-production version of the
data quality-control pipeline.

develop

new-feature-2

Branch where Bob is
working on a new feature.

new-feature-1

Main development line of project.
This branch is always in a “ready-to-
release” state (i.e. code must be
fully functioning).

main/master

new-feature-2

GitFlow: the idea is to have a long-lived pre-production branch (here
“develop”), on which new features are added until ready for a new
release, at which point the pre-production branch is merged into main.

• Useful if you distribute your code via the main branch of the Git
repo, without making formal releases, i.e. your end-users use the
latest version of main in production.

A tag indicates a version
of the data quality-

control pipeline used in
production.

1.1.0

1.0.7

Branch where Bob is
working on a new feature.

Branch where
Alice is working

on a new feature.

Trunk-based development: there is no long-lived branch outside of the
main branch. All feature branches are directly merged into main once they
are completed, and main should always be “production-ready”. Tags are
generally added to denote commits corresponding to versions used in
production.

• If you distribute your code via formal releases, then this strategy
makes more sense as it avoids the overhead of managing an extra long-
lived branch (the pre-release breach in GitFlow).

Recap: example of branched workflow: adding a new feature to an application and fixing a bug

Version of code
used in production

main

main

new-feature

bug-fix

HEAD

This commit
contains the
bug fix.

new-feature

main

HEAD

new-feature

main

bug-fix

The bug fix is
now in
production.

HEAD

For now the new branch points to
the same commit as “main”.

main

new-feature HEAD

main

new-feature

Branch where you work
on a new feature.

HEAD
HEAD

1. Create a new branch to work
on a new feature and switch to it

git switch -c new-feature

2. Do some work on the new
feature (add commits)

git commit ...

3. Bug alert! (problem discovered in production code, must be fixed asap)

Create a new, dedicated, branch for the fix.

git switch -c bug-fix main

4. After testing, merge
bug-fix into main

git switch main

git merge bug-fix

5. bug-fix branch can now be deleted.

6. Switch back to new-feature
branch to continue work.

git switch new-feature

git branch -d bug-fix

exercise 2
The Git reference webpage

This exercise has helper slides

mainHEAD main fix HEAD

main

fix HEAD fix

Exercise 2 help: workflow example

1. Create new branch fix
and switch to it.

3. Test new feature, then merge
branch fix into main.

2. Do some work,
add commits.

mainHEAD

git rebase
make a linear history

git rebase: replay commits* onto a different base

git rebase <branch to rebase on>

 git rebase: move/re-root a branch onto a different base commit.

 Important: the rebase command must be executed when on the branch to rebase, not the branch you rebase on.

* devel main

$ git branch

* devel

main

$ git rebase main

Make sure you are on the
branch you want to rebase !

devel *

git rebase main

main

Example:

The branch you want to rebase on.

Rebase will modify your commit ID values (history of the rebased branch).
It's best to only rebase commits that have never left your own computer.

b028233

38405c6

f5e333d

57dc232

* To be completely correct, we should actually say that we replay
the differences between commits (i.e. the changes that commits
introduce to our code base), not the commits themselves (a commit
is a state of the repo at a given time, it does not directly contain the
information of changes to the codebase).

git rebase: example
devel

maina b c g

d e

git rebase main

HEAD

f

git switch main

git merge devel

main

a b c g d' e' f'

devel

HEAD

d' e'

devel
HEAD

f'

a b c g main

Before starting the rebase: make sure
you are on the branch to rebase!
In this case, if we are not on devel:

git switch devel

We can now fast-forward merge.
Guaranteed to be conflict free :-)

The “replay” of the difference
between commits C and D
results in the commit D’.

Resolving conflicts with rebase

 Rebase re-applies all commit to rebase sequentially: at each step there is a potential for conflict…

 To resolve conflicts, you will have to (same as for conflict resolution during merges):

$ git rebase main

First, rewinding head to replay your work on top of it...

Applying: first commit on new branch

Using index info to reconstruct a base tree...

M new.txt

Falling back to patching base and 3-way merge...

Auto-merging new.txt

CONFLICT (content): Merge conflict in new.txt

error: Failed to merge in the changes.

Patch failed at 0001 first commit on new branch

Use 'git am --show-current-patch' to see the failed patch

Resolve all conflicts manually,

mark them as resolved with "git add/rm <conflicted_files>"

, then run "git rebase --continue".

You can instead skip this commit: run "git rebase --skip".

To abort and get back to the state before "git rebase",

run "git rebase --abort".

1. Edit the conflicting files, choose the parts
you want to keep, then remove all lines
containing <<<<<<<, ======= and
>>>>>>>>.

2. Mark the files as resolved with
git add <file>

1. Continue the rebase with
git rebase --continue

1.
2.
3.

When a conflict arises, Git will provide guidance:

Branch reconciliation strategies when history has diverged: merge vs. rebase

* main devel

a

b

c

d

e

f

g

h

devel

a

b

c

d

e

f

g

h

i main *

merge (3-way merge)

+ Preserves history perfectly.
+ Potentials conflicts must be solved

only once.
- Creates an additional merge commit.
- Often leads to a "messy" history.

git merge devel

devel *

a

b

c

d

e

f’

g’

h’

main

git switch main

git merge devel

git switch devel

git rebase main

a

b

c

d

e

f’

g’

h’ main *
devel

rebase + fast-forward merge

+ Cleaner history = easier to read and navigate.
- Conflicts may have to be solved multiple times.
- Loss of branching history.
History of rebased branch is rewritten, not a
problem in general.

Spoiler-alert: the end result is the same, and have the same content.i h’

Additional
“merge commit”.

Su
p

p
le

m
e

n
ta

ry
m

at
e

ri
al

…
Ultimate history preservation: force the addition of a merge commit with --no-ff

If keeping an exact record of how the history of a Git repo came into existence is of prime importance,
some people like to add a merge commit even if a fast-forward merge is possible.

This is possible by adding the --no-ff option (“no fast-forward”) to git merge.

git merge --no-ff <branch to merge>

git merge --no-ff feature

feature

a

b

c

d

f

g

h

main * f

g

h

main *

a

b

c

d

i

The merge commit “ i ” is added for the
sole purpose of allowing us to reconstruct
the exact history of the repo: it tells us
that commits “f”, “g” and “h” were once
part of a different branch, which was then
merged into “main”.

a

b

c

d

f

g

h main *

git merge feature

With a regular fast-forward merge, the
history is cleaner. However, the
information that “f”, “g” and “h” were
once part of a different branch is lost
(but in most cases this doesn’t matter).

$ git show 10fa3ad

commit 10fa3ad505821b0ea628b8

Merge: 7446b3e b4fb462

Author: Alice <alice@redqueen.org>

Date: Tue Oct 11 15:16:39 2022 +0200

Merge branch ‘feature'

Su
p

p
le

m
e

n
ta

ry
m

at
e

ri
al

…
Readability vs. history preservation tradeoff

Screenshots of two versions of a same repository (in the sense that it contains the exact same content
with mostly the same commits).

Here, history has been fully preserved, by
always using merges and forcing extra merge
commits (--no-ff) when needed.

Here, having a linear history has been prioritized
(better readability), by rebasing branches before

(fast-forward) merging them.

Su
p

p
le

m
e

n
ta

ry
m

at
e

ri
al

…
Never rebasing your changes
before merging can lead to a
hard to read history…

 Rebasing a branch (feat. manual conflict resolution)

Demo

Cherry-picking: copy-pasting commits

git cherry-pick

Cherry-pick: merge a single commit into the current branch

git cherry-pick <commit to pick>

devel

main a b c

d e

HEAD

f

ba0824c

d8405c6

devel

main a b c e'

d e

HEAD

f

git cherry-pick ba0824c

 git cherry-pick: "copy" a commit (or several) to the current branch.

The cherry-picked commit has the same
content, but a different hash.

Example:
"copy" a fix from one branch to another.

Retrieve data from earlier commits

git restore

git checkout

R
e

m
in

d
e

r…

git restore --staged <file name>

Un-stage file modifications (restore file in index)

work tree git index

xxxxxxx
xxxxxxx

xxxxxxx

xxxxxxx
xxxxxxx

xxxxxxx

 Restores the content of a file in the Git index back to
the latest commit (HEAD commit).

 Does not modify files in the working tree.

Committed
content

xxxxxxx
xxxxxxx

git restore --staged README.md

Version of file in the
last commit (HEAD)

$ git status

On branch main

Changes to be committed:

(use "git restore --staged <file>..." to unstage)

modified: README.md

$ git status

On branch main

Changes not staged for commit:

(use "git add <file>..." to update what will be committed)

(use "git restore <file>..." to discard changes in working directory)

modified: README.md

$ git restore --staged README.md

Example: un-stage changes to README.md file.

The file is still modified in the working directory, but the changes are no longer staged.

git checkout <commit reference> <file name>

$ git checkout ba08242 output.txt

$ git checkout HEAD~10 output.txt

$ git checkout v2.0.5 output.txt

Updated 1 path from 2a7fac8

$ git checkout devel-branch output.txt

Updated 1 path from e55fa6f

Examples: the <commit reference> can be e.g. a commit ID, a relative reference, a tag or a branch name.

Restore / checkout of individual files

Retrieving the content of a file from an earlier commit can be done with either:

git restore -s/--source <commit reference> <file name>

or

$ git restore -s ba08242 output.txt

$ git restore -s HEAD~10 output.txt

$ git restore -s v2.0.5 output.txt

$ git restore -s devel-branch output.txt

using a branch name, implicitly refers
to the latest commit on the branch.

A small difference between these two commands is that restore updates the file only in the working tree (i.e. the files in your working directory),
while checkout updates both the working tree and the index.

$ git checkout ad26560 README.md

Updated 1 path from e55fa6f

$ git status

Changes to be committed:

(use "git restore --staged <file>..." to unstage)

modified: README.md

$ git restore --source ad26560 README.md

$ git status

Changes not staged for commit:

(use "git restore <file>..." to discard changes

in working directory)

modified: README.md

Warning: these commands will overwrite
existing versions of the retrieved file in your
working tree (without any sort of warning).
Make sure you don’t have uncommitted
changes you want to keep.

If no commit references is specified, the file is retrieved from the index.

Checkout of the entire repo state at an earlier commit

git checkout <commit reference>

$ git checkout ba08242

$ git checkout HEAD~10

$ git checkout v2.0.5

Examples:

 Checking out a commit will restore both the working tree and the index to the exact state of
the specified commit.

 It will also move the HEAD pointer to that commit.

$ git checkout ba08242

Note: checking out 'ba08242'.

You are in 'detached HEAD' state. You can look

around, make experimental changes and commit them,

and you can discard any commits you make in this

state without impacting any branches by performing

another checkout.

 After a checkout, you enter a "detached HEAD"
state….

 To get back to a “normal” state you should go
back to a regular branch:

git switch <branch> or git checkout <branch>

$ git checkout ad26560
error: Your local changes to the following files would be

overwritten by checkout:

README.md

Please commit your changes or stash them before you switch branches

Make sure to have a clean working tree before doing a checkout!

$ git add --all

$ git commit --message "c3"

$ git rm output.txt

$ git rm --cached private_tests.py

$ git commit --message "c4"

$ git checkout c3 output.txt

$ git restore -s c3 output.txt

File remains
available in the
Git database

These 2 commands are almost equivalent: the difference is that
git restore will not update the git index with the retrieved file.

exercise 3
The crazy peak sorter script

This exercise has helper slides

Exercise 3 help: history of the peak-sorter repo feature-dahu

main

1c695d9

dev-jimmy

HEAD

This slide shows the history of the repo for exercise 3, both as the command line output and
as a schematic representation (on the right).

This can help you understand the command line representation of a repo’s history.

Part III

Working with remotes
Linking your local repo with an

online server

What is a “remote” ?

A remote is a copy of a Git repository that is stored on a server (i.e. online).

Local copy of repo
(on Alice’s computer)

Remotes are very useful, as they allow you to:

 Backup your work.

 Collaborate and synchronize your repo with other
team members.

 Distribute your work – i.e. let other people clone
your repo (e.g. like the repo of this course).

Remotes are generally hosted on dedicated servers/services, such as GitHub,
GitLab (either gitlab.com or a self-hosted instance), BitBucket, ...

git push

git fetch

git pull

Remote copy of repo

• Each copy of a Git repo (local or online) is a
full copy of the entire repo’s history
(provided it has been synced).

• Git does not perform any automatic sync
between the local and remote repos. All sync
operations must be manually triggered.

Good to know:

Local copy of repo
(on Bob’s computer)

Add a remote to an existing project (or update a remote’s URL)

Add a new remote: git remote add <remote name> <remote url>

Add a new remote (named origin) to the local repo:

$ git remote add origin https://github.com/sibgit/test.git

Update the URL of the existing origin remote.

In this example, the remote was moved GitLab.

$ git remote set-url origin https://gitlab.sib.swiss/sibgit/test.git

git remote set-url <remote name> <remote url>

Examples

Change URL of remote:

Note: by convention, the <remote name> is generally set to origin .

 Case 1: your local repo was cloned from a remote – nothing to do (the remote was automatically added by Git).

 Case 2: your local repo was created independently from the remote – it must be linked to it.

https://github.com/sibgit/test.git

Remote

dev

git push -u origin main

git remote add origin

https:/github.com/...

main origin/main

dev origin/dev

1. She creates a remote on GitHub and links it to her local repo using git remote add origin <URL of remote>

2. She pushes her branch main to the remote using git push -u origin <branch name>
(at this point the branch has no upstream, so the -u/--set-upstream option must be used).

3. She pushes her branch dev to the remote.

Alice’s computer

Example – part 1: creating a new remote and pushing new branches

git push -u origin dev

main

git switch dev

Alice has a Git repo with 2 branches: main and dev. She now wants to store her work on GitHub, to collaborate and have a backup.

devorigin/devdev origin/dev dev

main origin/main

Bob has now joined the team to work with Alice.

1. He clones the repo from GitHub using git clone <URL of remote> . At this point, Bob has no local dev branch - only a pointer to origin/dev.

2. Bob checks-out the dev branch to work on it. Because there is already a remote branch origin/dev present, Git automatically creates a new local branch
dev with origin/dev as upstream (no need add the --create/-c option to git switch).

Alice’s computer Remote Bob’s computer

Example – part 2: cloning a remote and checking-out branches

git clone https:/github.com/…

main

git switch dev

main origin/main

dev*

origin/dev dev

main origin/main

1. In the mean time, Alice added 2 new commits to dev. She pushes her changes to the remote using git push (since her dev branch
already has an upstream, there is no need to add the –u/--set-upstream option this time).

2. To get Alice’s updates from the remote, Bob runs git pull , which is a combination of git fetch + git merge .
Important: git fetch downloads all new changes/updates from the remote, but does not update your local branches.

Alice’s computer Remote Bob’s computer

Example – part 3: pushing and pulling changes

main

git push

git fetch

devorigin/dev

main origin/main

git merge
git pull

When using git push without specifying a remote
and branch name, the branch you wish to push must be
the currently active branch.

After fetching, if you want to
merge changes, you can also
simply run git pull instead
of git merge.

When using git pull the
branch you wish to pull must be
the currently active branch
(otherwise Git will fetch but not
merge changes)

dev

main

dev*

dev*

origin/dev

main origin/main

Both Alice and Bob have now both added some commits to their local dev branch. As a result, the history of their branches has diverged.

1. Alice pushes her changes to the remote with git push , as usual.

2. When Bob tries to git push, his changes are rejected because the history between his local dev branch and the remote have diverged!

Alice’s computer Remote Bob’s computer

Example – part 4: reconciliation of a diverging history

git push git push

! [rejected] dev -> dev (non-fast-forward)

error: failed to push some refs to

'github.com:alice/test-repo.git'

origin/dev

main origin/main

dev*

origin/devdev

main

dev*

main origin/main

In order to be able to push his changes to the remote, Bob must first reconcile his local dev branch with the remote…

1. Bob starts by performing a git fetch , just to get the new commits from the remote and see how his local branch
diverges from the remote (important: this operation does not impact/update his local dev branch).

Alice’s computer Remote Bob’s computer

origin/dev

main origin/main

git fetch

Example – part 4: reconciliation of a diverging history (continued)

Example – part 4: reconciliation of a diverging history (continued)

dev*

origin/dev git fetch

git merge origin/dev

This is equivalent to:

git fetch

git rebase origin/dev

This is equivalent to:

dev* origin/dev

dev* origin/dev

Option 1 - reconciliation using merge.

Option 2 - reconciliation using rebase.

To reconcile his local dev branch with the remote, Bob must decide to
either perform a merge or a rebase.

If you don’t remember the --no-rebase and --rebase

options of git pull , simply fetch and then merge or
rebase on origin/dev .

This introduces a merge commit.

$ git pull

fatal: Need to specify how to

reconcile divergent branches

* On recent Git versions (>= 2.33), the default
pull behavior is to abort if history diverged.
On older versions, the default behavior is to
merge (as in git pull --no-rebase).

In this situation, a regular pull raises an error *

Su
p

p
le

m
e

n
ta

ry
m

at
e

ri
al

…
git pull: a shortcut for fetch + merge

git pull

git fetch git merge --ff-only

The git pull command is a shortcut for:

1. : fetches all updates from the remote.

2. : merge the currently active branch with its upstream branch (origin/<branch>).

git pull

git fetch

git merge –ff-only

Fast-forward only -> any divergence in history will cause the command to fail and report an error.

Having the git pull command use --ff-only as
default merge option is a recent behavior (Git >= 2.33).
In older versions, to force git pull to only allow
fast-forward merges, the following option must be set:

git config --global pull.ff only

dev* origin/dev

main

dev*

origin/dev

main

dev* origin/dev

main

By default, git merges a branch with its upstream branch, so git merge is the same as git merge origin/<branch> .

dev* origin/dev

dev

main

dev*

main origin/main

Bob decides to merge without rebase and runs git pull --no-rebase .

Note: depending on the version of Git, the default behavior of git pull is different:
• Newer versions default to git pull --ff-only (i.e. raise an error if a fast-forward

merge is not possible)
• Older versions default to git pull --no-rebase (i.e. the automatically merge)

Alice’s computer Remote Bob’s computer

Example – part 4: reconciliation of a diverging history (continued)

origin/dev

main origin/main

git pull --no-rebase

git config pull.rebase false # merge

git config pull.rebase true # rebase

git config pull.ff only # fast-forward only

The default behavior can be modified in the git config.

dev* origin/dev

devdev*

main origin/main

Finally, Bob can git push his changes to the remote - there are no more conflicts.

Alice can then git pull them.

Alice’s computer Remote Bob’s computer

Example – part 4: reconciliation of a diverging history (the end!)

origin/dev

git pushgit pull

dev* origin/dev

main origin/main

dev

main

dev

feature

dev* origin/dev dev* origin/dev

main origin/main

Alice’s computer Remote Bob’s computer

Example – part 5: deleting branches on the remote

main origin/main

git fetch --prune

We are now at a later point in the development... Alice has just completed a new feature on her branch feature, and merged it into dev. She now wants to
delete the feature branch both locally and on the remote.

1. Alice deletes her local branch with git branch -d <branch name> .
2. Alice deletes the feature branch on the remote with git push origin --delete <branch name> . This also deletes her origin/feature pointer.
3. Bob runs git fetch , but this does not delete references to remote branches, even if they no longer exist on the remote.
4. To delete his local reference to the remote feature branch (origin/feature), Bob has to use git fetch --prune .

feature origin/feature

dev* origin/dev

origin/feature

main

git push origin --delete feature

git branch -d feature git fetch

The --prune option also works with
git pull --prune.

Example – part 6: overwrite history on the remote

dev*

origin/dev

dev* origin/dev

dev* origin/dev

dev* origin/dev

Option 3 – overwrite the remote
with git push --force

This will permanently
delete data on the
remote !!

git push

--force

Example, if you made some history-rewriting change locally, typically a rebase of a
branch.

On recent versions of Git (>= 2.33), the default pull
behavior is to abort the pull if a branch and its
upstream are diverging.
On older versions, the default behavior is to merge
them (same as git pull --no-rebase).

Interacting with remotes: commands summary

push new commits on the current branch to the remote.git push

git push -u origin <branch-name>

git fetch

git pull

git pull --no-rebase

git pull --rebase

Command Where to run and commentsWhat it does

Run on the branch that you wish to push.
(only changes on the active branch are pushed)

Same as git push, but additionally sets the upstream branch to
origin/branch-name. Only needed if no upstream is set.

Download all updates from the remote to your local repo (even for

non-active branches or branches for which there is no local version).

Does not update your local branch pointer to origin/branch-name.

Can be run from any branch.

Run on the branch that you wish to update.
git pull is a shortcut for
git fetch + git merge origin/branch-name

Download all updates and merge changes the upstream

origin/branch-name into the active branch (i.e. update the
active branch to its version on the remote).

Fetch + 3-way merge active branch with its upstream origin/branch-name.

Fetch + rebase active branch on its upstream origin/branch-name.

git pull --ff-only

-u option is only needed when pushing a branch to the
remote for the very first time. It is not needed if you initially
created the local branch from a remote branch.

Fetch + fast-forward merge active branch with its upstream origin/branch-name.
If a fast-forward merge is not possible, an error is generated.

git push origin <branch-name> Push new commits on the specified branch to the remote. When the remote (here origin) and branch names are
specified, the push command can be run from anywhere.

git push --force Overwrite the branch on the remote with the local version. Warning: this deletes data on the remote!

git clone <URL> Create a local copy from an existing online repo. Git automatically adds the online repo as a remote.

git remote add origin <remote url>

git remote set-url origin <remote url>

Add a new remote to an existing local repo.

Change/update the URL of a remote associated to a local repo.

Display the remote(s) associated to a repo.git remote -v

git branch -vva List branches of repo and their associated upstream (if any).

$ git branch -vva

manta-dev 18d8de0 [origin/manta-dev] manta ray: add animal name

main 6c8d731 [origin/main] Merge pull request #44 from sibgit/dahu-dev

* sunfish 18d8de0 manta ray: add animal name

$ git remote -v

origin https://github.com/alice/test-project.git (fetch)

origin https://github.com/alice/test-project.git (push)

By convention, the <remote name> is generally
set to origin , but it could be anything.

We can see that the branches main and manta-dev have an upstream branch. The sunfish branch does not.

The fetch and push URLs
should be the same.
To use different URLs (different
remotes) for push and fetch, add
two different remotes.

Interacting with remotes: commands summary

Command What it does

GitHub / GitLab
collaborate and share your work

GitHub / GitLab – an online home for Git repositories

 GitHub [github.com] and GitLab [gitlab.com] are hosting platforms for Git repositories.

 Very popular to share/distribute open source software.

 Allows to host public (anybody can access) and private (restricted access) repos.

 Hosting of projects is free, with some paid features.

 Popular alternatives include:

 A local instance of GitLab, the same as GitLab.com but hosted by someone else.

 BitBucket [bitbucket.org].

https://github.com/
https://gitlab.com/
https://bitbucket.org/

G
it

H
u

b
 s

lid
e

 …

Example of the “home page” of a repository on GitHub

Code tab: the “home”
page of your repo.

Branch you are
currently viewing

List of files present
in the repo.

If you have a
README.md file, it

is displayed here
(with markdown

rendering). To copy the repo’s URL.

Project home page on GitHub

G
it

H
u

b
 s

lid
e

 …
Repository settings (only available if you are the owner)

Here you can set diverse
settings concerning your
repository, e.g. :

• Invite collaborators.
• Setup branch protection.

Click here to
add a

collaborator

Click here to add
a collaborator

View with no collaborator added yet

G
it

H
u

b
 s

lid
e

 …
Other GitHub features (some of them)

“Home” of
your repo

(repo content) Issue tracker
Continuous integration
(automated testing)

Group issues and
PR by topics.

Add a wiki for
your project.

Setup automated security scanning
for your code (vulnerability check).

Statistics about your
repo’s activity.

G
it

La
b

 s
lid

e
 …

Project home page on GitLab

Branch you
are currently

viewing

List of files
present in
the repo.

If you have a README.md
file, it is displayed here

(with markdown rendering).
Copy the project’s URL

(e.g. to git clone it)

Copy the project’s URL (e.g. to git clone it)

Example of the “home page” of a repository on GitLab

G
it

La
b

 s
lid

e
 …

GitLab “project” menu

Add people to your project

List of commits

History graph of your project

All settings of your project

Repo home
page

Su
p

p
le

m
e

n
ta

ry
m

at
e

ri
al

…
Cloning a repo: HTTPS vs. SSH

When cloning (or adding a remote) via:

 HTTPS, you will need to provide a personal access token (PAT) as
authentication credential.

• If the repo is public, credentials are only needed to push data to
the remote (not to pull).

• Your local Git repo will in principle store the login credentials, so
you need to provide them only once.

 SSH, you will need to add your public SSH key to your GitHub account.

$ git clone https://github.com/sibgit/test.git

Reminder: command to clone a repo (here via https)

HTTPS and SSH are two different network protocols that machines can use to communicate.

https://github.com/sibgit/test.git

Pull Requests (GitHub) and
Merge Requests (GitLab)

An introduction to the upcoming exercise 4…

In exercise 4, we will all work together on building a website for the Awesome Animal Awareness project!

How we will work:

 We will split into teams of 2-3 people.

 Each team will be responsible for creating the page of an
(awesome!) animal *.

 Within a team, each person will work on a different part
of the animal’s page (e.g. one person works on the
“Habitat and distribution” section, while another works on

the “Diet” or “Behavior”).

* Note: every animal in the list is awesome – you can’t go wrong!

manta-bob

Main development line of project. This
is the version used to generate the live
website.

main

John’s personal branch.

Each time new commits are added
to main on GitHub/GitLab, the
website is updated.

Team branch of the team
working on the manta-ray

page.

manta-dev

manta-alice

sunfish-john

sunfish-dan

sunfish-dev

An introduction to the upcoming exercise 4…

Team branch of the team
working on the sunfish page.

 This is how (more or less) our shared repository will look on GitHub/GitLab…

 Changes made to the main branch are directly reflected in the production website – so we don’t want to mess-up main !!

 => You are not allowed to push directly to main.

How are we going to
contribute changes from

our team branches ?

Pull Requests (GitHub) / Merge Requests (GitLab)

Bob’s computer Remote

main

feature *

c

d

a

b main

featured

a

b

a

b

c

dmain

The PR/MR workflow:

• Bob opens a PR/MR on GitHub/GitLab.

• Alice reviews the changes made by Bob on
branch feature.

• Alice approves the PR/MR.

• Bob (or Alice) merges the PR/MR.

• On the remote, the feature branch is now
merged into main. Optionally, feature is
then deleted.

a

b

c

d* main feature

git fetch

git switch main

git pull

After the PR/MR is merged,
Bob updates his local repo.

Bob has completed his work
on a new feature. He pushes
his changes to the remote.

git push

Pull Requests (PR) and Merge Requests (MR) are a way to perform a merge operation on
the remote (on GitHub/GitLab) instead of in your local copy of the repository.

PR/MR are the same thing, they just have different names on GitHub/GitLab.

Why use a PR/MR instead of a local merge (and push) ?

 The branch you want to merge into (e.g. main) is
protected *.

 Gives the opportunity to the repository owner(s)
to review changes before merging them.

 Makes it easy to merge changes from a forked **
repository.

* Protected branches are branches where push operations are
limited to users with enough privileges.

** A fork is a copy of an entire repository under a new ownership.

c

After the PR/MR is merged, you can pull the changes from the remote to update your local repo (at this point the merge is only on the remote).

git fetch --prune

git switch main

git pull

git branch –d manta-dev

git switch main

git pull --prune

git branch –d manta-dev

Using git fetch is
optional, it’s useful if
you want to preview the
position of origin/main
before merging it into
your local main with
git pull.

--prune deletes local references to remote branches
(origin/manta-dev has been deleted).

G
it

H
u

b
 s

lid
e

 …
How to open a Pull Request on GitHub: step-by-step

1. On the project’s page on GitHub, go to the Pull requests tab.

2. Click on
New pull request.

Pull requests tab

Pending pull
requests will be

listed here…

You will need to do this in exercise 4 !

G
it

H
u

b
 s

lid
e

 …

3. Select the branches to merge:

Branch to
merge into

Branch to merge
(your contribution)

List of commits that will be merged
In this example, there are 2 commits on branch
“manta-dev” that will be merged into “master”.

Summary of changes introduced
by the pull request.

Green lines = new content.
Red lines = deleted content.

4. Click on Create pull request.

If there are conflicts, you probably need to
rebase your branch and resolve them.

G
it

H
u

b
 s

lid
e

 …

5. Optionally, enter
a message for the

people that will
review your pull

request.

6. Submit your pull request by clicking
Create pull request.

G
it

H
u

b
 s

lid
e

 …

The pull request is now created,
and awaiting approval from an

authorized person.
(e.g. the repo owner or a colleague)

Merging is blocked, because
someone has to approve your PR.

G
it

H
u

b
 s

lid
e

 …
The reviewer of your PR will
then have a look at your changes
(the modifications introduced
with your commits) and approve
them or request changes.

G
it

H
u

b
 s

lid
e

 …

Now that the pull request is approved, it can
be merged (either by the reviewer or by you)
by clicking Merge pull request.

Completed ! Optionally, you can delete your branch
on the remote (this will not delete it locally).

G
it

La
b

 s
lid

e
 …

How to open a Pull Request on GitLab: step-by-step

1. On the project’s page on GitLab, use
the left-hand side menu to navigate
to Code > Merge requests.

2. Click on New merge request, or on
Create merge request if your branch
is already listed (as is the case with
“manta-dev” in the example).

3. On the next screen, select the branch to merge
(in exercise 4, this is your team branch branch) as
Source branch, and “main” as Target branch.

Then click on Compare branches and continue.

Note: if you have clicked on Create merge request at step 2,
this step will be skipped as the correct target and source
branches will be automatically selected for you by GitLab.

You will need to do this in exercise 4 !

G
it

La
b

 s
lid

e
 …

4. Give a Title to your merge request (MR). A default Title will be pre-set.
Optionally you can enter a description.

5. At the bottom of the page, you
can see the commits that are part
of the MR (in this example, there

are 3 commits).

6. Click on Create merge request to create the MR.

G
it

La
b

 s
lid

e
 …

The pull request is now created, and awaiting approval from an authorized person
(e.g. the repo owner or a colleague).

The reviewer of your PR will then have a look at your
changes (the modifications introduced with your

commits) and approve them or request changes.

G
it

La
b

 s
lid

e
 …

When the merge request is approved, it can be merged by clicking on Merge.

Done! The MR is now merged, the changes
from the branch are now part of the “main”

branch of the repository.

Personal Access Tokens (PAT)
on GitHub or GitLab

Pushing data to a remote requires some form of authentication…
… otherwise anyone could push anything to your remotes!

For security reasons, GitHub does not allow using your user name
and password for authentication when running a git push
command. Instead you need to use a personal access token (PAT).

Personal access tokens (PAT) on GitHub/GitLab

In exercise 4 you will need a PAT to push
commits to GitHub/GitLab *.

Let’s generate a PAT together now…

* Alternatively, you can also authenticate to GitHub/GitLab using SSH keys. If your account
is already setup to use SSH keys, then you don’t need a PAT.

G
it

H
u

b
 s

lid
e

 …

In order to push data (commits) to GitHub, you will need a personal access token (PAT).

1. In your user profile (top right),
click on Settings.

2. In your Account settings,
click on Developer settings
(at the very bottom of the list)

3. In Developer settings, click
on Personal access tokens,
and select Tokens (classic).

Go to next page

4. Click on Generate new token, and
select (classic).

Generating a “personal access token” (PAT) on GitHub

G
it

H
u

b
 s

lid
e

 …

5. Add a Note (description) to your token and select
the repo scope checkbox. The click Generate token.

6. Copy the personal access token to a safe locations
(ideally in a password manager). You will not be able
to access it again later.

7. When you will push content to GitHub for the first
time in the project, you will be asked for your user
name and password. Instead of the password, enter
the personal access token you just created.

G
it

La
b

 s
lid

e
 …

In order to push data (commits) to GitLab, you will need a personal access token (PAT).

1. Click on your user icon (top left),
and select Edit profile. 2. In your User settings menu

(on the left side), click on
Access Tokens.

3. On the Personal Access Tokens page, click on Add new token.

Generating a “personal access token” (PAT) on GitLab

G
it

La
b

 s
lid

e
 …

4. Give a Token name to your token. You can leave the Expiration date empty,
so your token will be valid for 1 year.

7. Copy the personal access token to a safe locations (ideally in a
password manager). You will not be able to access it again later.

8. When you will push content to GitLab for the first time in the
project, you will be asked for your user name and password.
Instead of the password, enter the personal access token you
just created.

5. Select read_repository and write_repository as scopes.

6. Click Generate personal access token.

exercise 4
The Awesome Animal Awareness Project

This exercise has helper slides

main

yeti-dev

yeti-bob

main yeti-dev

yeti-alice

main

yeti-dev

clone

push

clone

fetch,
switch to yeti-dev

do work…

do work…

main yeti-dev

yeti-alice

yeti-bob

main yeti-dev

Exercise 4 help: branch – rebase – merge sequence

main yeti-dev

yeti-alice

yeti-dev

main

yeti-bob

main

yeti-dev

yeti-alice

pushmerge

yeti-dev

main

yeti-bob

rebase

pull

main

yeti-dev

Thank you for attending this course

