Version control with Git — optional modules Swiss Institute of

Bioinformatics

= Git submodules
= GitLFS
= Run automated pipelines with GitHub Actions and GitLab CI/CD

WWW.Sib.swiss

Robin Engler
Vassilios loannidis

Lausanne, 11-13 Oct 2023

Working with forks

Get your own copy of a public repo,
contribute code without access to a project’s repo

What are repository forks ? = i —
\ h;.ked from sibgit/great sic’ y;
. 9 G;e- E—PU\I requests (3) Actions [Projects [0 Wiki () Security |~ Insights 3 Settings
= A forkis simply a copy of an existing (original) Git repo.
P main ~ § 1branch ©0tags Gotofile Addfile -
" U n I i ke th e O rigi n a I re p O' yo u a re t h e Own e r Of th e fo rk * This branch is up to date with sibgit/great-style:main. {1 Contribute ~ 2 Sync fork ~
- Th e O rigi n a I re p O (fro m W h ic h t h e fo rk is d e rive d) is Ofte n ’ rmylonas Merge branch 'main’ of https:/github.com/sibgit/great-style into main bac47bc on Dec 27,2020 O 4 commits
referred to as the upstream. D AEAOMEmd
3 great_style.css Remove neon shadow animation. 3 years ago

Why is forking useful ?

* Allows to create a copy of the repo of which you are the owner, and on which you
therefore have write access (so you can push commits).

* Forking a repo and then making a pull request in GitHub (or a merge request in GitLab) is
the standard way of contributing to open source projects (since the owners of the project
don’t know you and will not give you write access to their repo).

. . ,/I Yoy >~
Forking on GitHub 7 iy gy Will >~

To create a fork of someone’s project:

- C /
1. Go to their repo on GitHub and click on the Fork button: | % Fork 58 s Hesn e

~
-~
N
S/
O Search or jump to Pull requests Issues Codespaces Marketplace Explore
3 sibgit/ great-style pubiic ® Unwatch 3 ~ % Fok 58 Stared 1 .
<> Code (%) Issues 19 Pull requests (® Actions [Projects 0 Wiki @ Security |~ Insights
main ~ $* 1branch © 0tags Go to file Add file ~ <> Code ~ About
A CSS to make your page look great. Create a new fO rk
’ rmylonas Merge branch 'main’ of https:/github.com/sibgit/great-style into main bac47bc on Dec 27,2020 {© 4 commits X X
0 Readme A fork is a copy of a repository. Forking a repository allows you to freely experiment with changes without affecting
[) README.md Create README.md 3 years ago T 1star the original project. View existing forks.
watchi
3 great_style.css Remove neon shadow animation 3 years ago < Fwatching
% 58 forks
README.md Y Owner * Repository name *
Releases .

== robinengler = / great-style v

Great-style

By default, forks are named the same as their upstream repository. You can customize the name to distinguish it

. . further.
This is a simple CSS to make your page look great.
Packages Description (optional)
No packagee publishad A CSS to make your page look great.
Publish your first package

Copy the main branch only
Contribute back to sibgit/great-style by adding your own branch. Learn more

Languages

@ CSS 100.0%

(@ You are creating a fork in your personal account.

2. A new page will open, where you can leave all values |:>
to their default and simply click on Create fork.

Pull requests Issues Codespaces Marketplace Explore

3. Done: you now have a copy of the repo under your I:>*’ robinengler/ great-style a

forked from sibgit/great-style 4

~

-~ -
own username and are the owner of that copy. ~—————— -

<> Code {9 Pullrequests (® Actions fH Projects [0 Wiki (O Security |~ Insights \ 8 Settings

‘-h\

\
J

ﬁ——,

git submodules

The "symlink" of Git repositories

What are submodules ?

‘)
. . . . Super-project [?
= Git submodules allow keeping a Git repository (the “submodule”) as per-pro) .
. i 8t
a subdirectory of another Git repository (the “super-project”) while SEAS PROUIEERER Wl
version controlling the version of the submodule. L A
— i glitter-cursor Submodule
o" H Y} . .
= The “super-project” and the submodule remain — -git | PYEr.
independent repos, and have independent remotes. — glitter.jJs
—— README .md
— git logo.png
—— README .md
Main repository / super-project (repo containing the submodule) — references.html
3 sibgit/ git_resources webpage Pubic ‘ o V
GitHub GitLab 4
@ sibgit Add submodule glitter-cursor 3be740e 38 seconds ago YT) 4 commits SprrOject (prOjeCt used as submodule in the Super'prOjeCt)
glitter-cursor @ 2f0f08e Add submodule glitter-cursor 38 seconds ago g S|bg|t /‘ gl |tte r-cursor Public O v
[y .gitmodules Add submodule glitter-cursor 38 seconds ago GItHUb G l t La b
O README.md Add README.md 12 hours ago @ sibgit Add glitter effect javascript code 2f0£f08e | 2fefese 2minutes ago &) 3 commits
D git logopng Add Git logo 12 hours ago Y README.md Update README.md 14 months ago
B references hmi Initial commit 12 hours ago O glitter]s Add glitter effect javascript code 2 minutes ago
README.md V-4 README.md V.
Git resources web page ¢ glitter-cursor
A simple web page referencing a list of useful Git resources. Leave a trace of magic glitter behind your mouse cursor.

What are submodules (continued)

A Git submodules is a reference to another
repository at a specific commit.

Important: the super-project does not keep track
of individual files inside the submodule.

Because the submodule is fixed at a specific commit
(unless explicitly changed), the maintainer of the
super-project has full control of which revision of
the submodule’s code they are using.

On GitHub/GitLab, submodules are shown with the syntax:
<submodule dir name>@<commit hash>

a@a
Local repo: PN %

git resources_webpage git

& sibgit Add submodule glitter-cursor

glitter-cursor @ 2f0f08e
.gitmodules
README.md
git_logo.png

references.html

& &0 0D O

— .git
—— glitter-cursor
.git
glitter.js Files tracked by the subproject
README . md (here used as a submodule)
— git_logo.png
|— README .md Files tracked by the super-project
L — references.html (main project)

Add submodule glitter-cursor
Add submodule glitter-cursor
Add README.md

Add Git logo

Initial commit

Use cases: when to use submodules

* Toinclude external code, i.e. code maintained by someone else (e.g. on GitHub/GitLab), into your project. With
Git submodules you can easily integrate external code, get updates from the upstream, and stay in control of
when the external code should be updated. Can also be used to re-use one of your own repos in multiple projects.

= To make public only a part of a project. You can put the part of your code/files that you want to make publicin a
submodule (with public access), and keep the rest of the code in a private repository.

= large project that uses multiple subprojects maintained independently.

=) Alice uses a library maintained 7= Y Alice wants to mix public Large pipeline with multiple
A by Bob as a submodule P and private files in a project. collaborators.
Alice’s utility Private files Big pipeline
— .git @ — .git __ — .git
— |Bob’s library (T ! Public files [T1) — i Tool A
L _git L _git | git L
— John’s_libraryi —— public.doc — Tool A e
L .git ¢ L public.code [Tool B %7l
—— Src.cC N —— i private.py — .git (TN
—— header.h :::r;‘:dmes ——ialso private.md — Tool B e
—— malnh.py nested! —i Tool C g
[README.md — .git (™%
—— setup.py — Tool B

When NOT to use submodules

= Don’t use submodules unless really needed, monolithic repositories are simpler to maintain.
= |f you have a sub-project that you want to use in multiple projects, it might be more efficient to
create a package instead. Most programming languages have a dedicated package

managers/repositories (CRAN for R, npm for javascript, PyPI for Python, etc).

= |f you simply want to have a nested Git repos on your local machine (but with no link between them),
you can simply add the nested repo to the .gitignore file of the higher-level repo.

git resources_webpage

.git
——iglitter-cursor
—— .git

—— glitter.js
—— README .md

' _ . o — git logo.png
If all you want is keeping a Git repo inside another one on | README.md

your local computer with no link between them... you don’t L .
—— .gltignore - glitter-cursor/
need submodules — save yourself the hassle! I" test outputs. tmp

= |f you add multiple submodules, you will

Adding/registering a submodule e have multiple entries in .gitmodules .
= _gitmodules should be version
To add/register a new submodule inside a Git repo: controlled, so that other people who clone

the project know where the submodule
projects are from (Git stages this file by
default when adding a new submodule).

git submodule add <URL of submodule repository>

Submodule with custom name:

This will: = Set custom name when adding submodule:
e git submodule add <URL> <name>

* Add a new directory named after the submodule’s repo name. " _
= Rename an exiting submodule:

. . git mv <submodule name>
* Download the content of the submodule corresponding to the latest commit <submodule new name>

(on the default branch) into that directory.

* Createa .gitmodules file at the root of the super-project. _
.gitmodules

[submodule “my-submodule"]

path = my-submodule <= Local path of submodule
url = https://github.com/some-user/my-submodule.git <= URL of submodule

* Initialize the submodule inthe .git/config file.
.git/config
[submodule “my-submodule™]

url = https://github.com/some-user/my-submodule.git
active = true

“active = true” --> module is initialized

https://github.com/some-user/my-submodule.git
https://github.com/sibgit/glitter-cursor.git

Adding a submodule: example

Repo is currently at

Subproject
Adding glitter-cursor as a submodule to git_resources_webpage (used as submodule in the super-project) commit | 2£0£08e
[sibgit/ glitter-cursor pubiic O !
. . , GitHub
Main repository / super-project o
(repo to Wthh a submodule iS added) @ sibgit Add glitter effect javascript code (fef@ie 2pminutes ago %) 3 commits
g Slbglt/ git_resources_webpage Public .o [README.md Update README.md 14 months ago
glitter js Add glitter effect javascript code 2 minutes ago
GitHub o J]
@ sibgit Add Git logo
. README.md Vi
Y README.md Add README.md .
¢ glitter-cursor
3 git_logo.png Add Git logo
Leave a trace of magic glitter behind your mouse cursor.
Y references.html Initial commit
README.md

¢ Git resources web page

git submodule add https://.../glitter-cursor.git

A simple web page referencing a list of useful Git resources.

git commit -m "Add submodule glitter-cursor"

@ sibgit Add submodule glitter-cursor .
: it push
e m——_ git p
(glitter-cursor @ 2f0f08e) Add submodule glitter-cursor
~---——-—-_—"

[.gitmodules

Add submodule glitter-cursor

[y README.md
[qit_logo.png Add Git logo
references.html Initial commit e e
Icon and syntax indicating a submodule, which is pointing at | 2£0£08e

README.md When a new submodule is added, it points at the latest commit of the submodule’s online repository.

https://.../glitter-cursor.git

e
S
Q
e
©
(S
>
S
(1)
i
o
()
S
K
Q.
Q.
-
(Vs

How Git keeps track of the submodule’s version: some more details.

Adding “glitter-cursor” as a submodule to “git_resources_webpage”

$ cd git_resources_ webpage

$ git submodule add https://github.com/sibgit/glitter-cursor.git

Cloning into '/home/.../git resources webpage/glitter-cursor'...
remote: Enumerating objects: 9, done.

remote: Counting objects: 100% (9/9), done.

remote: Compressing objects: 100% (6/6), done.

remote: Total 9 (delta 0), reused 3 (delta 0), pack-reused 0
Receiving objects: 100% (9/9), done.

Git submodule add does the following:

* Create a new directory named “glitter-cursor”.

to the latest commit (on the default branch).

* Createa .gitmodules file.

How does Git keep track of the submodule’s version ?

$ git status
Changes to be committed:
(use "git restore --staged <file>..
new file: .gitmodules
new file: glitter-cursor

." to unstage)

$ git diff --cached

diff --git a/.gitmodules b/.gitmodules
-—— /dev/null

+++ b/.gitmodules

@@ -0,0 +1,3 Q@

+[submodule "glitter-cursor"]

+ path = glitter-cursor

+ url = https://github.com/sibgit/glitter-cursor.git
diff --git a/glitter-cursor b/glitter-cursor

-—- /dev/null

+++ b/glitter-cursor

@e -0,0 +1 @@ 2f0£08e /

+Subproject commit 2£f0£08e991d828dd27c£399c0b88edaaad8a2bf9

[submodule "glitter-cursor"]
path = glitter-cursor
url = https://github.com/sibgit/glitter-cursor.git «Gmm

o Local path of submodule

* Initialize the submodule inthe .git/config file.

[remote "origin"]
url = https://github.com/sibgit/git resources webpage.git
fetch = +refs/heads/*:refs/remotes/origin/*
[branch "main"]
remote = origin
~=Derge s_refs/heads/main_ o e ———— L
:[submodule "glitter-cursor"]
: url = https://github.com/sibgit/glitter-cursor.git
| active = true

r

“active = true” --> module is initialized

The submodule is tracked/added as a “virtual file” to the index.

This “virtual file” contains the commit ID (SHA-1 checksum) to which
the submodule is pointing (and nothing else).

Individual files in the submodule are not tracked by the super-project.

* Download the content of “glitter-cursor” corresponding

LRLofsubmodum

Section that
was added

https://github.com/sibgit/git_resources_webpage.git
https://github.com/sibgit/glitter-cursor.git
https://github.com/sibgit/glitter-cursor.git

Clone a repository with submodules = After cloning a repository that contains submodules, there
will only be an empty directory for the submodules: their
content is not automatically downloaded!

git clone <repository>

git submodule init = You have to initialize* the local configuration files with:
git submodule update git submodule init
or = Now the content of submodule(s) can be retrieved** with:
git submodule update
glt cllc;ned<iepos;tzry> i _ = --recursive /--recurse-submodules means that the
git submodu e update Lt recursive command also applies to nested submodules (submodules
within submodules).
or

| T 1 This is what you will want

.) Shortcut to clone, initialize and update I . . .
git clone --recurse-submodules <repository> ’ P I to use in most situations.
all submodules. !

Notes:

* By default, the commands git submodule init/update apply to all submodules of a project. To apply them only to a specific
submodule, the name of the submodules can be passed: e.g. git submodule init <submodule name>

e * What does initialize a submodule mean, and what exactly does git submodule init do?
When Git initializes a submodule, it creates an entry for it in the .git/config file of the .git/config
superproject repo and marks it as “active = true”. [submodule "glitter-cursor"]
When working on a large project with many submodules, this makes it e.g. possible to eelve = Erve . _ .
L. url = https://github.com/sibgit/glitter-cursor.git
only initialize those submodules that are really needed for your work.

e **The meaning of updatein git submodule update is to fetch updates in submodules and update the working tree of the
submodules to the revision expected by the superproject. It does not mean to update the submodules to their latest version.

Clone a repository with submodules: example

Cloning git_resources_webpage that contains the submodule glitter-cursor.

O

GitHub GitLab

Online main repository / super-project
(repo that contains a submodule)

git clone
https://.../git resources webpage.git

agv
Local copy of repository E ®

[sibgit/ git_resources webpage Pubiic ‘

& sibgit Add submodule glitter-cursor

/ submodule, pointing at | 2f0£f08e
~s

™ .gitmodules
[README.md
Y git_logo.png

[y references.html

7 Add submodule glitter-cursor
Add submodule glitter-cursor
Add README.md
Add Git logo

Initial commit

git_resources_webpage

— git logo.png
— README .md
—— references.html

git

—— glitter-cursor <= Directoryis empty!

git submodule init
Initializes/activates the

git submodule update

submodule(s) in .git/config
—init --recursive

README.md

git submodule update
Downloads submodule content

Git resources web page git resources_webpage

A simple web page referencing a list of useful Git resources.

— glitter-cursor
—— glitter.js <== Now the files of the

L — README. submodule are
git clone --recurse-submodules md

https://.../git resources webpage.git glt_logo -pPng locally available.
| ——————) —— README .md

L references.html

Shortcut ! i

https://.../git_resources_webpage.git
https://.../git_resources_webpage.git

Cloned submodules are (by default) in detached HEAD state

= After cloning a repo (superproject) with submodules, a@a ?
the submodules are in detached HEAD state. [0
]) o git_ resources_webpage git
= To make it point to a branch you have to explicitly
checkout (switch to) that branch. — .git
—— glitter-cursor
$ ecd glitter-cursor T .g:!.t ,
S git status —— glitter.js
g L README.md

HEAD detached at 2f0f08e <= Commit the submodule

. - . — git logo.png
S git switch main is currently pointing at. —— README .md

—— references.html

To display the revision of the submodule to which a super-project is currently pointing:

$ git submodule status
2f0f08e991d828dd27¢cf399¢c0b88 glitter-cursor (heads/main)

e
S
Q
e
©
(S
>
S
(1)
i
o
()
S
o
Q.
Q.
-
(Vs

+]
Update a repository with submodules (git pull on the super-project)

Similarlyto git clone, running git pull in the super-project (the main project that hosts the submodule)
does not automatically update the submodules’ content. You need to either:

git pull é Important: these
git submodule update --init --recursive | < Downloads the submodule’s are commands to
updated content run in the super
_______________________________ or @ project!
| _ i This is what you will want
i git pull --recurse-submodules Shortcut ! 1 to use in most situations.
L T e

git pull --recurse-submodules

Files of the
Commit ID of super-project submodule are
¥ now updated.
ef91d34 b23ado8 git submodule update b23ado08
git resources webpage git pull git resources webpage | ~~init --recursive | 4it resources webpage
- _ : > _ _ : _ —
g1t 2£0£08e | < Commit ID of g1t £10b7d7 — g1t £10b7d7
——iglitter-cursor submodule ——iglitter-cursor ——iglitter-cursor
— .git the super- — .git — .git
. . project is
glitter.js 2F0£08e | Pointing at. glitter.js T glitter.js e
_ README.md S —— README.md ST ——o L README.md
: ; S i t :
— git logo.png X Commit ID of — git logo.png inus;::cc) ‘:it"; tlhe: ne — git logo.png
—— README .md submodule actual —— README .md - — README .md
content revision the super-
—— references.html — references.html | project is pointing at. L— references.html

Working with submodules

= Submodules are regular Git repos. Once inside, you can run
the same Git commands as you would on any repo.

= The super-project does not keep track of individual files in
the submodule: it only keeps track of the commit to which
it points.

However, the super-project will detect when changes are
made inside a submodule (but not exactly which changes).

Example:

$ cd glitter-cursor

We are now in the submodule directory.
git status

git add ...

git commit ...

git push

O O O O =

Example: files were added/modified in the submodule.

$ git status # run in the super-project’s root!

Changes not staged for commit: t:;>
modified: glitter-cursor (modified content,
untracked content)

Example: one or more new commits in submodule.

$ git status # run in the super-project’s root!

Changes not staged for commit:
modified: glitter-cursor (new commits)

N

= To run the same tasks on multiple submodules, there is the
handy command:

git submodule foreach “git command” ‘

Example:

$ git submodule foreach "git status"

$ git submodule foreach "git log --oneline"
Entering 'glitter-cursor'

2f0f08e (HEAD -> main) Add glitter effect code
841e83a Update README.md

b0b66£f8 Initial commit

Making changes to a submodule (modifying the content of the submodule)

Let’s assume we want to modify the content of a submodule, for instance:

* | Update the submodule’s content to a newer version.

* | Make changes to files in the submodule.

* | Point the submodule at an older version.

We proceed as follows: Commands run in the submodule:
. . S cd glitter-cursor
1. Make the desired changes in the submodule. J
If needed, pull/push the changes from/to the $ git pull $ git add ... $ git checkout ...
submodule’s remote. $ git commit ...
$ git push

Commands run in the super-project:

2. The commit ID (hash) of the submodule has now changed, ¢ jit status

so we must update the super-project by making a new On branch main
. oy - . . . Changes not staged for commit:
commit that will indicate the update in commit ID of the T L I

submodule.
$ git diff
diff --git a/glitter-cursor b/glitter-cursor
-—- a/glitter-cursor
. . +++ b/glitter-cursor
New commit to which the ~Subproject commit 2£0£08e991d828dd27c£399c0b88edaaad8a2bEd
submodule is now pointing =P +subproject commit £10d7b772342c6a9£31390af4£8al6£71c440777

Maki it in th S git add glitter-cursor
aking a new commi m' € ’ S git commit -m "Update submodule glitter-cursor"“
super-project $ git push

[+] :
Making changes to a submodule Subproject

(used as submodule in the super-project)

How things look on the GitHub pages of the remotes O sibgit/ glitter-cursor puic

GitHub

@ sibgit Add glitter effect javascript code 2 fo fo 8e 2fefese 2 minutes age %) 3 commits
gi t_re source S_Webpage [README.md Update README.md 14 months ago
glitter.js Add glitter effect javascript code 2 minutes ago
— .git .
9 git push
——iglitter-cursor
_ gi t é sibgit Improve glitter effect f1 0d7b7 f1ed7b7 4 minutes ago &) 4 commits
—— glitter.js [READMEmd Update README.md 14 months ago
E— README . md 4 dlitterjs Add glitter effect javascript code 8 hours ago
— g l t_l O go . pl’l g [glitter_improved.js Improve glitter effect 4 minutes ago
(— README .md
. references.html AEADME md 4
glitter-cursor

Leave a trace of magic glitter behind your mouse cursor.

Main repository / super-project (repo containing the submodule)

[sibgit/ git resources webpage Pubic O

GitHub
@ sibgit Add submodule glitter—cy 2f0f08e gl t p‘L'ISh @ sibgit Update submodule gii‘té!r—y £10d7b7
glitter-cursor @ 2f0f08e Add submodule glitter-cursor m glitter-cursor @ f10d7b7 Update submodule glitter-cursor
™ .gitmodules Add submodule glitter-cursor [y .gitmodules Add submodule glitter-cursor
[README.md Add README.md [README.md Add README.md
™ git_logo.png Add Git logo 3 git_logo.png Add Git logo
[references.html Initial commit [references.html Initial commit

--recurse-submodules option: automated submodules push

To avoid accidentally forgetting to push changes in a submodule when pushing in the super-project:

git push --recurse-submodules=check \: safeguard that will make your push fail is there are
any “non-pushed” changes in submodules.

git push --recurse-submodules=on-demand \: automatically push all submodules when
pushing the super-project.

These options can also be permanently set in the Git configuration of the super-project:
$ git config push.recurseSubmodules check

or))
Note: we are not using the --global option, so

$ git config push.recurseSubmodules on-demand this setting only affects the current repo.

= Important: all these commands must be run in the context (directory) of the super-project, not of the submodule!

Examples:
$ git push --recurse-submodules=check $ git push --recurse-submodules=on-demand
The following submodule paths contain changes that Pushing submodule 'submodule-name'
cannot be found on any remote: “e
submodule-name Pushing super-project (main project)

Please try
git push --recurse-submodules=on-demand

e
S
Q
e
©
(S
>
S
(1)
i
o
()
S
K
Q.
Q.
-
(Vs

Pulling updates for a submodule
Updating a submodule to its latest commit

1. Bob, the maintainer of the glitter-cursor repo, pushes a new update.

git submodule update --remote <submodule name>

t

If no submodule is specified, all
submodules are updated

2. Alice updates her submodule in the git_resources_webpage project

with Bob’s new update.

5

git

£10d47b7

glitter-cursor $ git push

— .git
—— glitter.js
—— README .md

—

N

$ git submodule update --remote
Submodule path 'glitter-cursor':

2f0£f08e £10d4d7b7

é sibgit Improve glitter effect f1ed7b7 4 minutes ago %) 4 commits
[README.md Update README.md 14 months ago
O dlitterjs Add glitter effect javascript code 8 hours ago
[glitter_improved.js Improve glitter effect 4 minutes ago
README.md V4

glitter-cursor

Leave a trace of magic glitter behind your mouse cursor.

GitHub GitlLab
checked out £10d7b77...

git resources_webpage git

T e 2£0£08e

—— i glitter-cursor
[.git m To complete the update, Alice updates the super-project with a new
I ; ; commit that will make it point to the submodule commit:

gézgf/gr ' (jjs 2£0£08e | [£10d7p7 P £10d7b7

—— L ' $ git status

[glt_jimgo.png' modified: glitter-cursor (new commits)

—— references.html

$ git
$ git

add glitter-cursor
commit -m “Update submodule to latest version"

Pulling updates for a submodule (command details)

Updating a submodule to its latest commit

To pull the latest changes for a submodule:

git submodule update --remote <submodule name>

* If no submodule is specified, all submodules are updated.

* If the local submodule has diverged from its remote (e.g. you made some commits),
--merge/--rebase must be added to the command to either merge or rebase.

S git submodule update --remote --merge ‘

.gitmodules
* By default Git will try to pull the changes from the main branch. To [submodule "glitter-cursor"]
H TR - path = glitter-cursor
pull frqm another branch, you have to specify itin .gitmodules STy
by setting the parameter branch. branch = master

* After the content of the submodule is updated, the update in its

version (commit hash) must still be committed. s git status
modified: my-submodule (new commits)
$ git add my-submodule
$ git commit -m “Update submodule to latest version"

Alternatively, the pull in the submodule can also be done manually:

$ cd my-submodule
$ git switch main # If in DETACHED HEAD state.
$ git pull

©
=
Q
=)
©
(S
>
S
(1)
i)
o
()
S
9
Q.
Q.
=
(Vo]

https://.../glitter-cursor.git

exercise 5

The Git reference web page gets
better with submodules

git LFS

large file storage

Tracking large files can be useful...

Tracking large files together with code is an attractive proposition, e.g. in scientific applications:

= Data analysis/processing pipeline.

= Machine learning applications (training data and code in the same place).

... but Git does not work well with large files

= Git was designed for tracking code —i.e. relatively small text files.

= Adding large files to a Git repo is technically possible, however:

* Since Git is a distributed VCS (version control system), each local copy of a repository will contain a full
copy of all versions of all tracked files. Therefore, adding large files will quickly inflate the size of
everyone’s repository, resulting in higher disk space usage (on local hosts).

e Git’sinternal data compression (i.e. packfiles) is not optimized to work with binary data (e.g. image or
video files). Each change to a binary file will (more or less) add the full size of the file to the repo, taking
disk space and slowing down operations such as repo cloning or update fetching.

e Commercial hosting platforms impose limits on the size of files that can be pushed to hosted Git repos
(GitHub: 100 MB, GitLab: no file limit but 10 GB repo limit).

The solution™: Git LFS

Git LFS (Large File Storage) is an extension for Git,
specifically designed to handle large files.

Basic principle: large files are not stored in the Git
database (the . git directory), instead:

= Only a reference/pointer to large files is stored in
the Git database.

= The actual files are stored in a separate repository
or “object store”.

Open source project: https://git-Ifs.github.com
First released in 2015.

Not all hosting services support Git LFS, and when they do,
storage space is limited (additional space may be purchased).

* Alternatives to Git LFS exist, but Git LFS is the most popular.
Example: DVC — Data Version Control - https://dvc.org

Features

Large file versioning

Version large files—even those as large as a couple
GB in size—with Git.

More repository space

Host more in your Git repositories. External file
storage makes it easy to keep your repository at a
manageable size.

Faster cloning and fetching

Download less data. This means faster cloning and
fetching from repositories that deal with large files.

Same Git workflow

Work like you always do on Git—no need for
additional commands, secondary storage systems, or
toolsets.

https://git-lfs.github.com/
https://dvc.org/

e
S
Q
e
©
(S
>
S
(1)
i
o
()
S
K
Q.
Q.
-
(Vs

GitHub and GitLab disk quotas, file size limit and pricing

= |f your institution is running their own instance of GitLab, you can check with them if they offer LFS support
(and how much space you can have their.

= Here are limits for 2 popular commercial Git hosting providers:

GitHub.com GitLab.com
Max file size 100 MB No size limit
Max repo size 1 GB (recommended) 10 GB
2 GB to 5 GB (max)
LFS max file size 2 GB No size limit (not sure)
LFS object store 1 GB storage for free 60 USD/year per 10GB

1 GB/month free bandwidth (download)

5 USD/month for each additional “pack” of 50
GB storage + 50 GB bandwidth

last updated on Feb 2021

® You can also setup a Git LFS object store on third-party storage provider - but you need to set it up
yourself and it is not a trivial task:

= SWITCHengines (220 CHF/TB*year) — no backup (need to organize your own).
= AWS (amazon web services).

Git LFS workflow overview

ﬁ@a

Only a reference/pointer to large files is stored in the Git database.

Large files are downloaded only when needed.

I\ Alice’s computer

Remote storage

The large files themselves are stored in a separate repository known as the “LFS object store”.

Transparent: only 1 extra command is needed for this workflow (git 1fs track).

==
Bob’s computer

JmJ) b

=
=]
=4
o
=)

main G

Working directory
[project.git]

o R o= o
= 8= B o =]
== == =
I=R=] oo o
ER=] R =]

10100

01101

dev-a

PP @

git commit ’

- git add

L

- git 1lfs track
<file name>

- git 1fs track
<file pattern>

Gitrepo[.git]
59

Git hosting service

¥) 9

GitLab GitHub Bitbacket

git clone
git fetch

10100
01101

LFS object

]
1
= |
L |
i Pointer to file, ! B B
| » very lightweight i
1 I
1 1
EEE
eyt S [
git push ‘
Actual file i
ﬁi’ig‘il | —
!
]
]
]

Ly L 1
10100 10100 10100
01101 01101 01101

Git LFScache[.git/1£s]

Y Y A
10100(| 10100 | 10100 | 10100
01101 {01101 |or01| fo1101

Generally hosted by the
Git repo hosting service,
but not necessarily.

Because Bob has only checked-
out the main branch, Git LFS only

downloaded one file

Remote storage Local Git repositories

a ’ ’
Git database Alice s chal repo Bob’s local repo |
Alice just started to work on the o Bob contributed to the project
comp|ete Git history content L > 'f project. She cloned the repo and ‘g’ since a while. He’s currently
[\ created the “dev-a” branch. A working on “dev-b”.

of project

) @

dev-b
dev-a

o’ @ v
o ”
o’

LOee

LFS object store

I

main

content

&
\ S
€
3

Large file. Colors represent
different versions or different
files.

[+d
Git LFS: initial setup o

* One time setup: to be executed only once per user/machine, after Git LFS was installed.

(this adds LFS Git filters to your global configuration file ~/.gitconfig)

git 1lfs install

Git LFS: tracking files

= Adding files to Git LFS:

git 1lfs track <file name or pattern>

= When using a file pattern (glob pattern), all files matching the pattern are tracked.

" Eachcallto git 1fs track createsanewentryinthe .gitattributes file.

= Examples:
$ git lfs track file l.csv <+«—— Track the file named exactly “file_1.csv”
S git 1fs track file 2.csv file 3.csv <+—— Track the files named exactly “file_2.csv” and “file_3.csv”
3 i LR REEE e et <+——— Track all files ending in “.fasta”
v gJ_'t 2 Al "*.:ng . 5 . <+ Track all files ending in “.img”
» gJ.'t Lfs track largc.a_fllc?_. L Ext <+————— Track all files whose name are of the form “large_file_” +
$ git 1fs track "subdir/*.jpg"

any single character + “.txt”
\ Track all files ending in “,jpg” in sub-directory “subdir”
Content of .gitattributes @
file 1l.csv filter=1fs diff=1fs merge=1fs -text

file 2.csv filter=1fs diff=1fs merge=1fs —text ' It is also possible to edit directly the

file 3.csv filter=1fs diff=1fs merge=1fs -text -gitattributes file instead of using

* fasta filter=1fs diff=1fs merge=1fs -text the git 1fs track command.

*.img filter=1fs diff=1fs merge=1lfs —-text @

large file ?.txt filter=1lfs diff=1fs merge=1fs -text
subdir/*.Jjpg filter=1fs diff=1fs merge=1fs -text

otherwise the pattern expands when the command is run and the matching files in your

j Do not forget “quotes” when usingthe git 1fs track command with a file pattern, o
current working directory (rather than the pattern) are added to . gitattributes.

git 1lfs track “*.img” ‘/ git 1lfs track *.img X

content of .gitattributes assuming that

“filel.img” and “file2.img” are present in the
working directory.

*.img filter=1fs diff=1fs merge=1lfs -text file 1.img filter=1fs diff=1fs merge=1lfs -text
file 2.img filter=1fs diff=1fs merge=1fs -text

if we add a new file “file_3.img” at a later
point in time...

File “file_3.img” is tracked because it

% File “file_3.img” is not tracked because it
matches the *.img pattern.

matches neither file_1.img nor file_2.img.

= Recursively tracking an entire directory

git 1fs track ”“directory path/**” <«— Using /** is important.
Using / or /* will not work.

Content of .gitattributes
dir to track/** filter=1fs diff=1fs merge=lfs -text

Git LFS file tracking: fine-grained control

» For ﬁne_grained control, git 1fs track <file name/pattern> ‘ lll test-project
can be run in sub-directories. This places .gitattributes @ data
files in sub-directories (similar to how .gitignore files t@ seq Afasta
behave). @ seq_B.fasta
= The scope of each .gitattributes fileisits current — [l references
directory and sub-directories. L@ ref _segences.fasta
» Running git 1fs track <file name or pattern> — [l image_files
inside a sub-directory, creates the .gitattributes file 3 gitattributes
: inside that sub-directory =) scan-1img « ing £ilter—ifs ..
e % scan-2.img
S
b
g — a .gitattributes
E‘ _3 logo.img * fasta filter=1lfs ..
2 The .gitattributes file(s) in your repo) test_file.fasta
gC_J should be tracked - just like .gitignore file(s).
%_ i|§ Don’t forget to commit them.
R ° @ File tracked by Git LFS
(Vo]

Negative pattern matching

= Unlike .gitignore files, .gitattributes files do not support the !'pattern for negative
matching (to tell Git LFS to not track a file).

" |tis besttowrite .gitattributes files so that no negative matching is needed.

= |f unavoidable, a workaround is possible by adding a line with the file/pattern that should not be
tracked followed by !'filter 'diff !'merge after the general pattern to track.

Example of .gitattributes file for tracking all “jpg” files except “small_logo.jpg”

*.Jjpg filter=1fs diff=1fs merge=1fs —-text
small logo.jpg !filter !diff !merge <= File that should not be tracked

©
-
Q
=)
©
(S
>
S
(1)
i)
o
()
S
9
Q.
Q.
=
(Vo]

Git LFS: untracking files

= Removing files from Git LFS:

git 1lfs untrack <file name or pattern>

" Callsto git 1fs untrack remove entries fromthe .gitattributes file.

= The same result can be obtained by manually deleting lines from the .gitattributes file.

Git LFS: adding and committing files

= Nothing special to do!

= Once files are tracked by LFS, adding them to the git repo and committing them is done as usual.

git add ...
git commit ...

git push ...

Git LFS: updating files

= Nothing special to do!
= Files tracked by Git LFS can be updated, staged and committed like any file under Git control.

$ git add sequence db.fasta <= The new version of the file is added to the
$ git commit -m “updated sequence database file” local Git LFS cache. The pointer file is updated.
$ git push <— The new version of the file is pushed to

the remote LFS object store.

= After commits are pushed, the remote Git LFS object store contains a copy of each version of
all LFS-tracked files.

Data backup

The idea behind Git LFS is to avoid replicating large data files across local copies of a Git repository.
& This has implications for data-backup:

= For LFS-tracked files, local repos cannot be relied-upon to contain a full copy of all data.
= Therefore the remote repository has to be backed-up.

In addition, keep in mind that, depending on the data you are working with, there might be legal aspects to consider
(e.g. data might have to be stored encrypted, or be stored within the country)

Using Git LFS: diff-ing files

= For LFS-tracked files, git diff will only show the difference between pointer files, not between
actual file content (even for text files).

git diff HEAD~1 sequences A.fasta

diff --git a/sequences A.fasta b/sequences A.fasta

index a33c8a7..01£8d67 100644

--- a/sequences A.fasta

+++ b/sequences A.fasta

@@ -1,3 +1,3 @@

version https://git-1fs.github.com/spec/vl

-oid sha256:cld5ab0faf552cdb3a365347093abc42a4e65718348el7eaadl584d650ae7aab
-size 6010948

+0id sha256:£fc51cl860c4341el75dcfc24£fc2c653£f75c5e8b3bae6cf80d3632788ccafd4379

+size ?)11029 \

size of file in bytes checksum (SHA-256) of file content.

Listing files tracked by Git LFS

= List LFS-tracked files of HEAD commit (i.e. currently checked-out files).

git 1lfs 1ls-files

= List files associated with any reference (commit).

git 1lfs ls-files <ref>

Example:

Example:

* = file is present in working tree

- = file is absent in working tree —

= List all LFS-tracked files in the entire repo history.
git 1fs 1s-files --all

git 1lfs ls-files

b04fo62c7al * large file 1.txt
efdc76ef2a * sequences B23.fasta
e6aab57987e * subdir/logo image.img

git 1lfs ls-files HEAD~1

b04f62cTal
fc51cl1860c
efdc/6ef2a
e6aab7987e

*

*

*

large file 1.txt
sequences Al2.fasta
sequences B23.fasta
subdir/logo image.img

git 1fs ls-files origin/dev

b04tfoZC

*

large file 1.txt

e82048cbdd - sequence C34.fasta

Example:

e6aab7987e * subdir/logo image.img

git 1fs ls-files --all

b04f62c7al
efdc/6ef2a
e6aab7987e
e82048e6d3
fc51cl1860c
cldS5ab0faf

large file 1.txt
sequences B23.fasta
subdir/logo image.img
sequence C34.fasta
sequences AlZ2.fasta
sequences AlZ2.fasta

Clearing the local Git LFS cache

= Deleting files from the Git LFS local cache [.git/1fs/objects] can be done using:

git 1lfs prune

Files that are deleted by the prune command are those that:

= Are not currently checked-out.

= Are not part of the latest commit of a “recent” branch or tag (“recent” defaults to 10 days and can be customized via

1fs.fetchrecentcommitsdays and 1fs.pruneoffsetdays).

= Are not part of a commit that was never pushed to the remote (since in this case there is not yet a copy of the file in

the remote object store, and hence deleting it would amount to permanently losing the file).

= 1fs prune command options:

= Lists the number of files that would be deleted,

git 1fs prune --dry-run _ _
without actually deleting them.

$ git 1lfs prune --dry-run
prune: 6 local object(s), 4 retained, done.
prune: 2 file(s) would be pruned (12 MB), done.

git 1lfs prune --verify-remote = A safety options that explicitly verifies that files are present
on the remote LFS object store before deleting them.

Pulling LFS content from a remote

= Nothing special to do!

= Just use the regular Git commands and Git LFS will download content as needed.

git clone ...
git fetch ...
git pull

git switch ...

"
>
)

©

dev-a

= By default, only the LFS-tracked files needed for the currently
checked-out branch are downloaded.

Example: if we git clone anew repository, only the LFS-tracked files
needed for the latest commit of the main branch are downloaded.

Pulling additional LFS content from a remote (files from older commits or files from other branches) 0
Sometimes, it can be useful to download LFS-tracked files to the local LFS cache

(e.g. when anticipating off-line time).

git 1lfs fetch --recent ‘ = Downloads the LFS-tracked files of the last commit of all branches
or tags that are considered “recent”.

= By default, “recent” is defined as no more than 7 days old.
= The definition of “recent” can be customized via the
git config 1lfs.fetchrecentcommitsdays <days>
configuration option (where <days> = number of days).

git 1lfs fetch --all = Downloads all LFS-tracked files for all commits.

© .?
1

> >
Q Q

© ©

S git 1lfs fetch --recent

fetch: Fetching reference refs/heads/main
fetch: Fetching recent branches within 7 days
fetch: Fetching reference origin/dev-a

fetch: Fetching reference origin/dev-b

e
S
Q
e
©
(S
>
S
(1)
i
o
()
S
K
Q.
Q.
-
(Vs

= On Git hosting platforms like GitHub or GitLab, LFS-tracked files are listed just like regular files...

¥ master ~ #* 1branch T 0tags Go to file Add file ~ About b
test repo for git LSF
robinengler first commit aB95bad 17 minutes ago ¥%) 1 commit
[0 Readme
subdir first commit 17 minutes ago
[.gitattributes first commit 17 minutes ago Releases
M README.txt first commit 17 minutes ago No releases published
Create a new release
™ large file 1.txt first commit 17 minutes ago
™ logo.img first commit 17 minutes ago
Packages
™M seguences A12.fasta first commit 17 minutes ago
Mo packages published
M sequences B23fasta first commit 17 minutes ago Publish your first package

= ... however, when selecting an LFS-tracked file, the content is not shown - because it’s not there!
Instead a “Stored with Git LFS” mention is listed:

¥ master ~ test_|sf/ sequences_B23.fasta Go to file

robinengler first commit Latest commit a895bad 15 minutes ago %) History

£a.1 contributor

=

11.5 MB @ Stored with Git LFS Download u

View raw
(Sorry about that, but we can't show files that are this big right now.)

exercise Git LFS 1

e
S
Q
e
©
(S
>
S
(1)
i
o
()
S
K
Q.
Q.
-
(Vs

Tracking files already in Git

When a set of files are already part of a Git repository’s history, there are two options to start
tracking them with Git LFS:

1. Add the files (or file patterns) as tracked files with git 1£s track. In this case however, the
versions of the files associated with already made commits will remain in the Git database.

2. Remove the files’ entire history from the Git repo, and have them tracked by Git LFS instead
(over all of the repo’s history). This can be done using git 1fs migrate command.

>
(V]
Option 1 © Option 2
Keep files to track history in the Git () = Remove files from entire Git repo
repo up to the current commit. G w sequence_B.fasta history and rewrite history with

git 1fs track “*.fasta” files stored in LFS.

git add *.gitattributes
git add *.fasta
git commit

... now do the same for branch dev ﬁ

3 sequence_A.fasta (updated) git 1fs migrate import \

E% --include="*.fasta” \
= --everything
git 1lfs checkout

3 sequence_A.fasta

+" "o

c
o SHe (R . . >
c H: G sequence_B.fasta (stored in LFS object store)

Y

10100
01101

0

uo| sequence_B.fasta (stored in the Git repo)
3 sequence_A fasta (~) [#] @ sequence_A fasta

sequence_A.fasta (updated) sequence_A.fasta (updated)

+ The repo’s history remains the same. + Large files have now their entire history saved in Git LFS.
- Git repo size possibly still too large to push to GitHub/GitLab + Size of Git database [.git/objects] truly reduced.
- Mix of files being stored in Git repo and LFS object store = not a clean solution. - Complete history rewrite: everyone has to reset their copy of the Git repo.

e
S
Q
e
©
(S
>
|
(1)
i
c
()
S
K
Q.
Q.
-
(Vs

The git 1fs migrate command o

git 1fs migrate import --include=<file name or pattern> --everything

7 7
* List of files or file patterns to “import” into Git LFS.

* Entriesin .gitattributes will be automatically created.
* Multiple patterns/files can be specified by separating them
with a comma, e.g.: --include="*.fasta, *.img"

This options tells git LFS to
process all (local) branches of
the repository.

Example:
git 1lfs migrate import --include="*.fasta,*.img" --everything
git 1fs ls-files After the migrate import command completes, LFS-tracked files in the

TUzZedesast = logo. g working directory are replaced with their pointer (indicated by the “ —“).
6f0adadd2f - sequences A.fasta

git 1lfs checkout

git 1lfs 1ls-files

702c4c3ab56 * logo.img
6f0adadd2f * sequences A.fasta

The content of the files can be restored
with git 1fs checkout.

e
S
Q
e
©
(S
>
S
(1)
i
o
()
S
K
Q.
Q.
-
(Vs

e
S
Q
e
©
(S
>
S
(1)
i
o
()
S
K
Q.
Q.
-
(Vs

The git 1fs migrate command

A couple of warnings...

History overwrite warning !

Thegit 1fs migrate import command rewrites the entire history of your repository!

= Updating a remote repo with the changes requiresa git push --force.

= Coordinate this operation with other people working on the repo.

Data loss warning !

= Neverrun git 1fs migrate import with a non-clean working directory. All your
uncommitted changes will be lost (true story)!
! j ! |

To be on the safe side, it’s best to make a full copy/backup of your Git repository
before running the migrate command. In this way, should anything go wrong, you can
restore your repository from your copy.

Behind the scenes... o

= Git LFS stores the tracked files in the LFS cache [.git/1£fs/objects] rather than in the
Gitrepo [.git/objects].

= Alightweight “pointer” file is saved in the git repository.

Example of “pointer” blob objects stored in the Git repo [.git/objects]

.git/objects/d4/c3cf36alc6865ba5e4d6e82e937dc835006231 :uébwa

git cat-file -p d4c3cf36

.git/objects/a3/3c8a78275c0763d964b3a2b0facdf5909b58c3 1Z;bw
es

version https://git-1lfs.github.com/spec/vl
git cat-file -p a33c8a78 oid sha256:e6aa57987e7b8340dbf0edlf4e5£90cf58ala%98de2d7a860aeedl78eade734b4
size 21852324

version https://git-1lfs.github.com/spec/vl
oid sha256:cld5ab0faf552cdb3a365347093abc42a4e65718348el7eaadl584d650ae7aab
size 6010948

The actual files are stored in the Git LFS cache [.git/1£fs/objects]
21.8 MB
.git/1lfs/objects/e6/aa/e6aa57987e7b8340dbf0edlf4e5£f90cf58ala98de2d7a860aeedl78eade734b4 -r

.git/1lfs/objects/cl/d5/cld5ab0faf552cdb3a365347093abc42ad4e65718348el7eaadl584d650ae7aab ;MB

©
=
Q
=)
©
(S
>
S
(1)
i)
o
()
S
9
Q.
Q.
=
(Vo]

exercise Git LFS 2

GitHub Actions
GitLab CI/CD

Automate your testing and delivery

Continuous integration, continuous delivery/deployment (CICD)

» The objective of CICD is to automate the testing/monitoring (integration) and delivery/deployment of code.

= Examples:

= Run format and syntax checkers each time a new commit is pushed to the repo on GitHub/GitLab.
= Run tests (e.g. unit tests, integration tests) each time a new commit is pushed to the repo on GitHub/GitLab.
= Create a new release on GitHub/GitLab or a new Docker container each time a new version tag is pushed to the repo.

= GitHub Actions and GitLab CI/CD are both providing a (more or less) equivalent service: perform automated
tasks/actions when a given condition is triggered, e.g. when a new commits is pushed to the repo on GitHub/GitLab.

. . . . “ ” . . . ‘e . ”
On GitHub, the CICD pipelines are called Action “Workflows”. On GitLab, the CICD pipelines are called “Pipelines”.
<> Code (2 Issues [Pullrequests (©) Actions [Projects (@ Security |~ Insights 8 Settings - 2 : i
Au
Actions New workflow All workflows Pipaline 1D
Showing runs from all workflows
I O tatus Created by Stag
31 workflow runs Merge requests 5 . ® B--
Greetings e
-code- Reposttory graph
Javascript-code-check Python code check w— AATTIN O rasied - @ G & >
Manual workflow python-code-check #13: Commit da6d00c pushed by robinengler fesues S 4
& Manag
Markdown-lint - <
& Plan () Passed)
homcode-check © Markdown syntax check o o o ® &
python-code-ched Markdown-lint #4: Commit da6d00c pushed by robinengler o i
@ Buid %=)
Management i ey SR c ® @& ©
© JavaScript code check
€ caches Javascript-code-check #4: Commit da6d00c pushed by robinengler
) Passa
E Runners Beta ® @&
@ JavaScript code check o
JavaScript-code-check #3: Commit 7391e52 pushed by robinengler © asim @ %
) Deploy]
@ Markdown sgfntax crlefc_k' o & Opers — @ .
Markdown-lint #3: Commit 7391e52 pushed by robinengler @ Monitor #® .
1 Analyze
@ Python code check T & il @rated @
python-code-check #12: Commit 7391e52 pushed by robinengler L
) Passec g
@ Python code check © ®) ©
python-code-check #11: Commit 2e0efBb pushed by robinengler 37

Basic principles

= The tasks to run are called jobs.

= Jobs are grouped togetherin
pipelines (in GitLab) or
workflows (in GitHub) *.

= |n a pipeline, dependencies
between jobs can be specified,
to run them in a specific order.

Example of a GitHub Workflow, with 4 jobs distributed in 3 stages.

python-code-check.yml

on: push

Job 1

's

@ format-check

@ syntax-check

Job 2

%,
1

15s

10s

in parallel.

1. First stage with 2 jobs.
These jobs run first, and

Job 3
o

@ unit-tests 7s

1

2. Second stage: job 3 only
runs if the first two jobs

succeed.

Job 4
o

@ test-run-script

1

9s

3. Third stage: only runs if

the stage 2 job succeeds.

Example of a workflow that failed: the jobs 3 (unit-tests) and 4 (test-run-script) did not run because
a job they depend on (syntax check) has failed.

python-code-check.yml

on: push

@ format-check

€ syntax-check

13s

9s

) unit-tests

Os

() test-run-script 0s

Basic pﬁﬂCiplES: GitLab Cl/CD Example of a GitLab pipeline, with 12 jobs distributed in 3 stages.
' biomedit > sett-rs > Pipelines > #1025470749
" In a GitLab pipeline, jobs are chore(release): sett-rs/0.6.1
grouped in Stages- @ Passed Robin Engler created pipeline for commit b8371390 [finished 1day ago
For sett-rs/0.6.1
- A” JObS Ina Stage runin para”el' latest €O 15 Jobs @441.23 G) 136 minutes 42 seconds, queued for 1 seconds
= The next stage only runs if all jobs Pipeline Needs Jobs 15 Tests O
in the previous stage succeed -
(unless more fine-grained dependency test build release-pypi

relationships are defined).

| | | |
| L L |
| | I ;| |
| | I ;| |
| L L |
| () code-style) : () build-linux-binary 4 : | () release-pypi - |
| L L |
| |
| I . | |
| () code-style-gui = : : () build-linux-gui o~ I [|
| L L |
| |
| | . | |
I (@ test-linux SN : (*) build-linux-wheel = : | |
| L L |
| |
| |) | |
| © test-mac)N :) build-mac o : | |
| - y :
| - | |
: @) test-python o : () build-windows o : | |
| | |
| N N |
: (*) test-windows =) : : I I
| | |
N S SO o
1. First stage 2. Second stage: only 3. Third stage: only
runs if all jobs from runs if all jobs from
stage 1 succeed. stage 2 succeed.

How to setup a pipeline: general principle

Setting-up a pipeline follows a similar procedure on both GitHub and GitLab:

= Write an instruction file that defines the jobs to run to your Git repository.
= Commit the instruction file to your repo, and push the commit to the GitHub/GitLab remote.

= GitHub/GitLab automatically detect your CICD instruction files and, from now on, will run the jobs as specified.

1. Write a configuration file 2. Add the configuration 3. Push the commit to the
with instructions on how file to your local repo and remote on GitHub/GitLab.
and when to run each job. commit it.

Done ! Your jobs will now
|:> run automatically
whenever their trigger

GitHub GitLab condition is met.

Pipeline config file

Pipelines configuration files: location and naming conventions

For GitHub/GitLab to detect your CICD configuration files, they must strictly follow these conventions.

Naming conventions for GitHub Actions

= Workflow (pipelines) configuration files
must be stored in .github/workflows.

= One or more .yml workflows can be defined.

B

—2 .github
L 2 workflows
’ N

test project

=| test-workflow.yml
(D)

another-workflow.yml |

script. t
AR For GitHub Actions, multiple
README.md .yml files (each defining a

workflow) can be provided. They
must be in a directory named
exactly .github/workflows.

Naming conventions for GitLab CI/CD

= All jobs are defined in a single config file.

* The config file must be named exactly .gitlab-ci.yml

= The config file must be placed at the root of the repo.

W test_project

) ()

- 2 git

.gitlab-ci.yml

script.py
README.md

<

For GitLab CI/CD to
work, a single file
named .gitlab-ci.yml
must be provided.

Pipelines configuration files: GitHub Actions syntax

= CICD configuration files for GitHub must be written in YAML (Yet Another Markup Language - https://yaml.org).

= YAML is a “human-readable data serialization language”, which roughly means that it’s a way to write some key-value
configurations in an easy way using plain text.

Commit and push to GitHub... the workflow runs.

=i O robinengler / test_github_actions &

GitHub workflow example:

<> Code (© Issues 11 Pun requests ® Actions [Projects Q Security [Insights b

A basic (and useless) workflow with a single job that prints “Hello World”.

& test-workflow

@ Test workflow #1
test-workflow.yml

I £ ECLL) Triggered via push 1 minute ago status
workflow name =» name test-workflow

Jobs == robinengler pushed - c1a515a main Success
display name =» run-name: Test workflow
Trigger condition =» on push \ N

@ print-hello-world

Run details test-workflow.yml
on: push

The push condition means that the job will run each

) Usage
time a commit is pushed to the GitHub remote.

&9 Workflow file

Jobs to run in workflow =» jobs @ print-hello-warld 35

Comments can be added to the file like this.
job name =» , print-hello-world

runs-on: ubuntu-latest print-hello-world
/ steps Instructions for the
e el | name: Checkout git repo . .
levels must be £ /checkout@v4 =~ | first (and only) job of Set up job
indented properly. B sk S Sl B the workflow.
Rels Say hello... Checkout git repo
run: echo “Hello World” e

v @ Say hello...

v Run echo “Hello World”
echo "Hello Worl

shell: ‘bash -e {0}

https://yaml.org/

name: python-code-check python-code-check.yml | GitHub workflow example S
run-name: Python code check . .
on: [push, pull request] <— Multiple trigger conditions A python code quality checking
can be specified. workflow with 3 jobs in 2 stages. | ® romatcnec © unittests
jObS . @ syntax-check
Run the python black formatter.
format-check: Each job runs on a separate VM (virtual machine). Here we indicate that the VM
runs-on: ubuntu-latest <+— should be a Linux Ubuntu machine. Other operating systems can be chosen.
steps: - | -
- name: Checkout git repo - | Step 1 of job: here we clone the content of our repo to the VM.
uses: actions/checkout@v4 i T
- name: Install Python 7 ; ;
uses: actions/setup-python@v4 - | Step 2 of job: here we install python.
- name: Install black 5 - Our job has 4 steps. Each step
run: | . . | Step 3 of job: we install the tool that checks code format. starts with a line prefixed with “-”.
python -m pip install --upgrade pip
pip install black = T
- name: Run black - | Step 4 of job: we run the code formatter on the content of our repo.
run: black --check . J -
Run pylint, a python code linter (checks for syntax errors).
syntax-check:
Content not shown to save space on the slide...
Run unit-tests for our code.
unit-tests:
needs: [format-check, syntax-check] <«—— The needs: keyword isused to indicate dependencies between jobs. This job will only run if both
runs-on: ubuntu-latest the “format-check” and “syntax-check” jobs complete successfully.
steps: T
- uses: actions/checkout@v4 <+ + Giving a name to a step is optional. Here we skip naming and directly tell what the step should do.
- uses: actions/setup-python@v4 * The actions/preset@version indicates to run a preset action available from GitHub, e.g.
with: checkout@v4 => check-out the repo, setup-python@v4 => install python in the VM.
python-version: '3.11'
- name: Install pytest
run: | .. 4_ To write commands on multiple lines, start the run: commandwith . (-
python -m pip install --upgrade pip e
pip install pytest b e O
- name: Run pytest “.‘ This only AN
run: pytest test *.py ‘\‘ G\t“u

Pipelines configuration files: GitLab CI/CD syntax { Worg My
s >
= GitLab CI/CD configuration files are also written in YAML, but the file structure is different from GitHub Actions. “\\"\G,(«

N /
= Not possible to use the same files for GitLab and GitHub.

.gitlab-ci.yml
GitLab CI/CD configuration file.

workflow:

Optional: the workflow: section allows to set values at the pipeline
name: "Test workflow" ™

level. E.g. give a name to the pipeline.

T

DIERGEE S The stages: astageisa group of job that are run at the same time (i.e. they do not depend
- test - | on each other). Stages run in the listed order, and jobs from a given stage only start running if
- deploy all jobs from the previous stage have completed successfully.

T

Jobname = test-job:
Stage that the —» stage: test

job belongs to image: alpine:latest <«— image: containerimage (e.g. for DockerHub) to use to run the job.
before script: 7) -)
it A ewre e |1 before_ script: Optional. Commands that will run before the “script” commands.
- i
Definition of a - script: i . :
job (“test-job”) — echo "Hello World!™“ - | script: commands that the job should run.
rules: - |

- if: SCI_COMMIT_TAG rules: can be used to specific the conditions under which a job

when: never should run (by default jobs run on every commit).
- if: $CI_COMMIT_BRANCH i ¥

Job name =» deploy-application:
stage: deploy
image: python:slim
script:
- echo “here we would build and push our \
application to DockerHub”

Another job -

[+
GitHub Actions requires an access token with “workflow” scope:

= To push a commit that contains a workflow configuration file, the authentication token needs to have the
“workflow” scope enabled.

= You can create a new token, or add this scope to an existing token.

New personal access token (classic)

Personal access tokens (classic) function like ordinary OAuth access tokens. They can be used instead of a password
for Git over HTTPS, or can be used to authenticate to the API over Basic Authentication.

Note

Repo and workflow access token
What's this token for?
Expiration *

30 days % | The token will expire on Thu, Nov 2 2023

Select scopes

Scopes define the access for personal tokens. Read more about OAuth scopes.

repo Full control of private repositories
repo:status Access commit status
repo_deployment Access deployment status
public_repo Access public repositories
repo:invite Access repository invitations
security_events Read and write security events

workflow Update GitHub Action workflows

Running the pipelines

= All workflows/pipelines run automatically — there is nothing to do (exception: workflow that requires manual triggering).

» GitHub/GitLab will send you a notification email if a workflow/pipeline fails.

GitHub: to view your workflows, go to the Actions tab.

<> Code (©) Issues 7 Pullrequests () Actions [Projects @ Security |~ Insights 3 Settings

Actions New workflow All workflows Q, Filter workflow runs
Showing runs from all workflows
I All workflows

. 31 workflow runs Event ~ Status ~ Branch ~ Actor ~
Greetings

avaScript-code-check
J P Python code check o B 1 minute ago

Manual workflow python-code-check #13: Commit da6d00c pushed by robinengler (9 In progress
Markdown-lint
" de-check © Markdown syntax check e £ 1 minute ago
on-code-chec
Py Markdown-lint #4: Commit da6d00c pushed by robinengler @ 18s
Management .
@ JavaScript code check p—r B 1 minute ago

£ caches JavaScript-code-check #4: Commit da6d00c pushed by robinengler ©13s

Runners

@ JavaScript code check £ 5 minutes ago

main
JavaScript-code-check #3: Commit 7391e52 pushed by robinengler @ 13s
© Markdown syntax check g £ 5 minutes ago
Markdown-lint #3: Commit 7391e52 pushed by robinengler @ 15s
@ Python code check ain £ 5 minutes ago
python-code-check #12: Commit 7391e52 pushed by robinengler @ 44s

@ Python code check i
python-code-check #11: Commit 2e0ef8b pushed by robinengler @ 49s

5 7 minutes ago

Running the pipelines

= All workflows/pipelines run automatically — there is nothing to do (exception: workflow that requires manual triggering).

» GitHub/GitLab will send you a notification email if a workflow/pipeline fails.

GitLab: to view your pipelines, go to the Pipelines tab.

pr
0o + !':rl Robin Engler > test-gitlab-cicd > Pipelines

1 A
A o L5 15 All 18 Finished Branches Tags Clear runner caches Cllint Run pipeline
Q, Search or go to...
Filter pipelines ‘ Q ‘ Show Pipeline ID v~
Project
T test-gitlab-cicd Status Pipeline Created by Stages
5 Pinned >
@ Running Python code check (;ﬁ:; O-®-® E 1
8 Manage > #1031588073 ¥ main - asSbae8s (& ~ =
latest
Plan >
<[> Code b
® canceled Python code check_ \ﬁ; OO0 ol
@) @ 00:00:26 #1031581597 ¥ main < ca26489d B
Bulld v B3 2 minutes ago
I Pipelines
Python code check
o @ Passed Y)) @;‘ ORO) & v
@ 00:00:47 #1029680457 ¥ main -0 6bc4eéds @& v
Pipeline editor B 1day ago

Pipeline schedules

(@) Passed Python code check @ ® 4 v
=
Artifacts @ 00:00:48 #1029673366 ¥ main < dbé2ebas (& >
B3 1day ago
@ Secure >
@ Deploy >) Failed Python code check ® A T
& 00:00:16 #1029671295 ¥ main < 8dcc8Pes @& g
@ Operate > &1 day ago
2 Monitor >
) Failed Pythen code check ® A T
4 Analyze > & 00:00:16 #1029607133 ¥ main - 60444fbb @& A
B9 1 day ago
G Settings >
O Python code check 'ﬁt © 4 v
- A\l L/
#1029592449 ¥ main < 22a7e210 & v =

® 00:00:16
B 1day ago

Investigating failed jobs

= Clicking on a job that failed displays details on the reason for failure... so that we can fix problems.

« Markdown-int Example: this job performs a check on
© Markdown syntax check #6 markdown document syntax and found
an error in the README.md file.

l ([Summary
Triggered via push 1 minute ago Status Total duration Artifacts
Jobs == robinengler pushed -o- 0972db5 Main Failure 18s -
@ markdown-lint
Run details markdown-lint.yml
on: push

& Usage Clicking on the job displays additional details.

— el

Y Workflow file - - - ~ I
l markdown-lin S l
\ © markdown-lint =) © Markdown syntax check #6
~ — -

(m Summary
markdown-lint

Annotations
2 errors

Jobs

markdown-lint
€ Heading levels should only increment by one level at a time: README.md# I °

README .md:3 MDO01/heading-increment/header-increment Heading levels sho

Set up job

) Run details Run actions/ch
© markdown-lint

Failed with exit code: 1 Gj
Usage

<9 Workflow file

Run DavidAnson/markdownlint-cli2-action@v13

arkdownlint-cli2-acti

globs: *.md

nlint-c
Finding: *.md
Lintir
sumr
r-increment Heading

Error: Fa

Post Run actions/checkou

Complete job

Finding workflow p

resets

= GitHub provides a number of workflow presets under the Actions tab > New workflow.

Choose a workflow

Build, test, and deploy your code. Make code reviews, branch management, and issue triaging work the way you want. Select a workflow to get started.

Skip this and set up a workflow yourself -

Categories
Deployment
Continuous integration
Automation

Pages

Q. R package

Found 3 workflows

Publish Python Package
By GitHub Actions

Publish a Python Package to PyPI on
release.

Configure

-

Python @

Ruby Gem
By GitHub Actions

R package R
By GitHub Actions

Create and test an R package on multiple R
versions.

Pushes a Ruby Gem to RubyGem
GitHub Package Registry.

Configure R® Configure

The workflow code can be copied, | =——p
directly added to the repo, or

used for inspiration

ovg test_github_actions / .github / workflows / ryml in main
Edit Preview & Code 55% faster with GitHub Copilot
1 [This workflow uses actions that are not certified by GitHub.
2 # They are provided by a third-party and are governed by
3 # separate terms of service, privacy policy, and support
4 # documentation.
5 #
6 # See https://github.com/r-1lib/actions/tree/master/examples#readme for
7 # additional example workflows available for the R community.
8
9 name: R
10
11 on:
12 push:
13 branches: ["main"]
14 pull_request:
15 branches: ["main"]
16
17 permissions:
18 contents: read
19
20 jobs:
21 build:
22 runs-on: macos-latest
23 strategy:
24 matrix:
25 r-version: ['3.6.3', '4.1.1']
26
27 steps:
28 - uses: actions/checkout@v3
29 - name: Set up R ${{ matrix.r-version }}
3 uses: r-lib/actions/setup-r@f57f1301a053485946083d7a45022b278929a78a
31 with:
32 r-version: ${{ matrix.r-version }}
33 - name: Install dependencies
34 run: |
35 install.packages(c("remotes”, "rcmdcheck"))
3 remotes: :install_deps(dependencies = TRUE)
37 shell: Rscript {6}
38 - name: Check
39 run: rcmdcheck::rcmdcheck(args = "--no-manual", error_on = "error")
40 shell: Rscript {0}

41

Finding workflow presets

More workflows can be found on the
GitHub Marketplace
https://github.com/marketplace

But these are provided by third-parties
so their quality and trustworthiness
might vary.

Use with caution.

Marketplace / Search results

Types

Apps

Actions

Categories

API management
Chat

Code quality

Code review
Continuous integration
Dependency management
Deployment

IDEs

Learning
Localization

Mobile

Monitoring

Project management
Publishing

Recently added
Security

Support

Testing

Utilities

Filter

Free

Free Trials

GitHub Enterprise

Q_ Search for apps and actions

Actions

An entirely new way to automate your development workflow.

20296 results filtered by Actions X

Download a Build Artifact

By actions @ Creator verified by GitHub
Download a build artifact that was
previously uploaded in the workflow by
the upload-artifact action

¥ 1.1k stars

Close Stale Issues

By actions @ Creator verified by GitHub
Close issues and pull requests with no
recent activity

vy 1.1k stars

Setup Java JDK

By actions @ Creator verified by GitHub

Set up a specific version of the Java JDK
and add the command-line tools to the
PATH

¥ 1.3k stars

Upload a Build Artifact

By actions @ Creator verified by GitHub

Upload a build artifact that can be used by
subsequent workflow steps

¥ 2.5k stars

Setup .NET Core SDK

By actions @ Creator verified by GitHub

Used to build and publish .NET source. Set
up a specific version of the .NET and
authentication to private NuGet
repository

Y 819 stars

Sort: Best Match ~

First interaction

By actions @ Creator verified by GitHub

Greet new contributors when they create
their first issue or open their first pull
request

1% 654 stars

Setup Node.js environment

By actions @ Creator verified by GitHub
Setup a Node.js environment by adding
problem matchers and optionally
downloading and adding it to the PATH
% 3.2k stars

Cache

By actions @ Creator verified by GitHub
Cache artifacts like dependencies and
build outputs to improve workflow
execution time

¥ 3.9k stars

Setup Go environment

By actions @ Creator verified by GitHub

Setup a Go environment and add it to the
PATH

% 1.2k stars

Execute Job

By parasoft @ Creator verified by GitHub
Execute a job in Parasoft Continuous
Testing Platform

¢ 9 stars

User Settings > Usage

Usage quotas

Q Search or go to...

User settings

There are monthly limits for using CICD & rene
pipelines (as of 2023): "

E3 Billing

Usage Quotas

Usage of resources across your projects

Pipelines Storage

Compute usage since Oct 01, 2023

13 / 400 units @ -
* GitHub Actions: 2000 min/month & #eteens Fiter charts by yoar
. . lChat 2023 v
e GitLab CI/CD :400 min/month © Aecoss Tokens
B3 Emalils Usage by month
(&) e Compute usage Shared runnerdurat\on@
[Notifications
. p 15
What to do if you need more I
GPG Keys
Compute tlme? 2 Preferences 12
[Comment Templates e
* Buy compute minutes from S sctve esson I
. . [Authentication Log E
GltHUb/G|tLab |® Usage Quotas E ¢
e Setup your own runner machine
3
(e.g. on SWITCHengines)
Mut;' 2023 Jul 2023
Month
0O + l:i Robin Engler > test-gitlab-cicd > Pipelines > #1029673366 == Compute usage by month Avg: 4.33 - Max: 13
v
CAR A Python code check
Q search or go to... () Pending Robin Engler created pipeline for commit db62ebaé (3
Project For main
T test-gitlab-cicd SS9 €O 3 Jobs
. Bl ” Pipeline Needs Jobs 3 Tests 0
Merge requests (i
Pipelines Group jobs by »7 Stage 7 Job dependencies
Repository graph
Issues 0 test
Manage ' @ format-check (© <+—— When using the “free” runners, a job can sometimes be “pending” for a

Plan >
(") syntax-check S

while, waiting for a free slot on the compute infrastructure.

Code >

Build > @® unit-tests (]

Secure >

Buy additional compute minutes

3% used

Oct 2023

exercise CI/CD

Exercise 1A -> GitHub Actions
Exercise 1B -> GitLab CI/CD

Thank you for attending this course Swiss Institute of

Bioinformatics

