E

Version control with Git — advanced topics Swiss Institute of

Bioinformatics

WWW.Sib.swiss

Robin Engler
Vassilios loannidis

Lausanne, 16-17 Oct 2024

Git advanced topics: course outline

= Review / Refresher: quick review of basic commands.

= Rewriting history: interactive rebase, git reset and commit amending.
= Detached HEAD state explained.

" The Git stash: Git’s “cut and paste” functionality.

= Git tags: label important commits.

Optional Git extensions (these can be useful for specific applications).

= Git submodules: "symlink" Git repos.
= Git LFS: large file storage.

= GitHub Actions and GitLab CI/CD: continuous integration and deployment.

Course slides

= 3 categories of slides:

[Regular slide
[Red]

Supplementary
material
[B'UE]

Reminder slide
[Green]

Slide covered in detail during
the course.

(r] \\R - A
GitHub-specific GitLab-specific\a\
[Purple] [Purple]

i
i

Some slides are specific to GitHub or GitLab.

Material available for your interest, to read on your own.

Not formally covered in the course.
We are of course happy to discuss it with you if you have questions.

Material we assume you know.
Covered quickly during the course.

review / refresher

Git commands we assume you know

2 ways to start working on Git repo:

git init <& main @ HEAD
git clone https://...

Committing content is a 2-step process:

git add <file or directory> % < git clone
git commit -m “commit message...” “@” .
: GitHub GitLab
[T .glt

"I T/

Manipulate the Git index (staging area):

)) Unstage a file
git restore --staged <file> | »] from the index & new-feature
git rm --cached <file>
_ . & bob-test

Reset a file in the working tree
git restore <file> / to its state as in the index.
git rm <file> \ develop

DEIete a ﬁle in both the Working Pre-production version of the

directory and the index. data quality-control pipeline.

Create and switch branches:
git branch <branch> & main
Main development line of project. This is

git switch <branch> the version of the data quality-control
git checkout <branch> pipeline used in production.

git switch -c <branch>
git checkout -b <branch> .

-
)
©
£
£
[
o

git log
git show

git status

$ git log

commit f6éceaac2cc74bd8cl52el11b9cl2ada725e06c8b9 (HEAD -> main)
Author: Alice alice@redqueen.org

Date: Wed Feb 19 14:13:30 2020 +0100

Add stripe color option to class Cheshire cat.

$ git show 89d201f pat
commit 89d201fd0leadocad99%9aldobcbdabaal78c92lect
Author: Alice <alice@redqueen.org>

Date: Wed Feb 19 14:00:02 2020 +0100

S git status

On branch main

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

modified: LICENSE. txt

Changes not staged for commit:

directory)

untracked;file.txt

(use "git add <file>..." to update what will be committed) |
(use "git checkout -- <file>..." to discard changes in working

modified: README . md
Untracked files:
(use "git add <file>..." to include in what will be committed)

ses tests.
Fix function so it now passes tests
269
diff --git a/script.sh b/script.sh
it .

on, from highest to lowest.

p)\

tail -nl | cut -£5)

= git log --all --decorate --oneline --graph

git log --all --decorate --oneline --graph

peak sorter: display highest peak at end of script

peak sorter: added authors as comment to script

peak sorter: improved code commenting

peak sorter: add Dahu observation counts to output table
README: add more explanation about the added Dahu counts
Add Dahu count table

peak sorter: added authors to script
peak sorter: display name of highest peak when script completes

Add gitignore file to ignore script output
Add README file to project

peak sorter: add check that input table has the ALTITUDE and PEAK columns

Ran script and added output

peak sorter: add +x permission
Add input table of peaks above 4000m in the Alps
peak sorter: add first version of peak sorter script

git config --global alias.adog "log --all --decorate
--oneline --graph"

Reminder...

IDONTALWAYS USE GITLOG

“E“"E ﬁf‘(wr.nar

P
Branch merging

= For merge operations, the branch into which one merges must be the currently active branch (* in the figures below).

= When the branch that is being merged (here devel) is rooted on the latest commit of the branch that it is being
merged into (here main), the merge is said to be fast-forward.

Fast-forward merge Non fast-forward merge
= Guaranteed to be conflict free. = Creates an additional “merge commit”.
q I = Conflicts may occur.
eve
‘D g main * Additional “merge”
'D @ devel / commit is created.
(g) &) & main *
() *main) (e) (h) <4 devel >
() (e) (h)&devel
(eJ &amain * (e) @ @
© (¥ ? %
¢ = ¢ = ©
G git merge devel O git merge devel @
k) O © &4
@ .
2 © © :
S . .
()
(a'd

P
Branch rebasing

= For rebase operations, the branch being rebased must be the
current branch (* in the figures below).

= Rebase operations re-write history: the ID of rebased
commits is modified (“ in the figures below).

= Branches can be rebased on other branches, or on an older
commit of themselves (interactive rebase).

(h’) éa devel *

maincp (e) (h) <& devel * (e) &@main

ONO
© (O =

git rebase

(d)
©
(o) main ()
© ©

-
)
©
£
£
[
o

Cherry-picking

= “copy” changes introduced by a commit on
another commit.

*main) (e) (h)<$ devel
d @
© (£ git cherry-pick
(b) % <g commit>

©
o * main (g)

== ()=)=(0)=()=~(o)
=@~

5]
Conflict resolution: merge vs. rebase

Skip a conflicting commit and continue rebasing.

$ git rebase --skip

-
)
©
£
£
[
(2

|
git merge : git rebase
; I
Conflict G o T : I . . o .
git merge develop File with conflicts | $ git rebase main File with conflicts
message Auto-merging README.md X I| Auto-merging README.md
CONFLICT (content): Merge conflict in README.md I'| CONFLICT (content): Merge conflict in README.md
Automatic merge failed; fix conflicts and then commit : error: could not apply da%96caa... fix: update README
the result. I hint: Resolve all conflicts manually, mark them as
I resolved with "git add/rm <conflicted files>", then run
["git rebase --continue".
Il hint: You can instead skip this commit: run "git rebase
Il --skip".
: hint: To abort and get back to the state before "git
I rebase", run '"git rebase --abort".
1 Could not apply da96caa... fix: update README
|
1
|
|
|
Commands $ git add README.md Il $ git add README.md
after manual $ git commit : S git rebase --continue
conflict I
a |
resolution I
|
|
|
|
|
Commands to . i
. $ git merge --abort : $ git rebase --abort
cancel operation :
|
|
|
|
|
|
|

Working with remotes

git push Push (upload) changes on current branch to a remote.

)

git push -u origin <branch> When pushing a newly created branch to the remote for the 1t time. “-u” is short for “--set-upstream’

git fetch Retrieve (download) all changes from the remote.
git pull git fetch+git merge of current branch with its remote counterpart.
git clone Create a local copy of a remote repository.

git push git fetch

git push -u git p'lJ.ll

origin <branch>
% | | git clone

GitHub GitLab

-
)
©
£
£
[
o

Interacting with remotes: summary

Command What it does Important comments
git clone <URL> | Create a local copy of an online repo.
git push | push new commits on the current branch to the remote. Run on the branch that you wish to push.
(only changes on the active branch are pushed)
git push -u origin <branch-name> Same as git push, but additionally sets the upstream -u option is only needed when pushing a branch to the
branch to origin/branch-name. Only needed if remote for the very first time. It is not needed if you
branch has no upstream set. initially created the local branch from a remote branch.
git fetch Download all updates from the remote to your local Can be run from any branch.
repo. Does not update your local branch pointer to Downloads all changes from the remote (even on

branches for which you do not have a local version) to

origin/branch-name . local
your local repo.

git pull I Download all updates and merge changes the upstream Run on the branch that you wish to update.
origin/branch-name into the active branch (i.e. update git pull isa shortcut for o
the active branch to its version on the remote). git fetch + git merge origin/branch-name

git pull --no-rebase | Fetch + 3-way merge active branch with its upstream origin/branch-name.

git pull --rebase | Fetch + rebase active branch on its upstream origin/branch-name. On recent versions of Git, the default pull behavior

is to abort the pull if a branch and its upstream are

git pull --ff-only | Fetch + fast-forward merge active branch with its upstream origin/branch-name. diverging. On older versions, the default behavior
If a fast-forward merge is not possible, an error is generated. isgit pull --no-rebase.

-
)
©
£
£
[
(2

rewriting history

power (and responsibility) at your fingertips
with interactive rebase and git reset

git commit --amend

Overwrite (re-write) the latest commit of a branch

Amending the latest commit of a branch

Use case scenario: b1241f5 ‘ Addd a README.md file
= We realize we made a mistake in a file, just after we made a new commit. l
* |n addition, we also spot a typo in the commit message... 0f1c3bc @ First commit to new repo

git add README.md

git commit -m “Fix typo in README”
-~ «— Symbolizes the “staged”

@ Fix typo in README f—_\ () corrected README.md file
|
I

(8) Addd a README file (8) Addd a README file
I I . .
@ First commit to new repo @ First commit to new repo

Possible but not ideal: git commit --amend -m “Add

23 New commit just to fix a typo ! a README file”

Cleaner solution
23 Typo still present in the second commit message ! ‘/

&/v 57dc232 ‘ Add a README file

Commit ID is modified ! l
0flc3bc CA) First commit to new repo

Amending the latest commit of a branch

To amend the latest commit of a branch:

1. Stage the changes you want to make to your commit, or, if you just want to modify
the commit message, don’t stage anything.

2. Runoneofthegit commit --amend commands as shown below:

= This will open an editor where you can modify the commit message interactively.

git commit —-amend

= This is to enter the new commit message directly in the command.

git commit --amend -m “new message”

= This is to keep the commit message unchanged (only edit the content of the commit).

git commit --amend --no-edit

demo: commit amending

interactive rebase

Interactive rebase: re-order, squash, and delete commits

The Commit history of your new feature branch and how you wish it was.

commits

A 57d33ab | Add test for new feature
Merge
|

c3738a7 | New feature completed
I
& ba08242 | Committed test output file by
mistake.

I
& 57dc232 | fix typo in function_1() !!
| Re-order
d
arj merge de7c91e | New feature completed
. . with A
& woopsie, forgot to test. Fixed and tested

ae7/c3la
bug in function_1() |

I
b1241f3 | add function_2()

b1241f5 | add function_2()

0fic3bc | add function_1()

I
0fic3b7 | add function_1()

Standard vs. interactive rebase

HEAD = (E) devel *
|

Standard rebase

Interactive rebase
same, but with more control

replay commits on top of oo s over how commits are replayed:
o ~ A
~
another base commit. @ X .. hNY = re-order
~ ~ N
I SS REGERN = delete

= merge (squash)

HEAD = (E) devel *
|

@ git rebase main git rebase
—-interactive

. /7
main CI) e
O

Cl) |
O O

Interactive rebase: re-order, squash, and delete commits

-— parent of first commit in the rebase
git rebase --interactive/-i <commit X ref>

= Starting from (just after) the specified <commit X>, Git opens a text editor where you
interactively give instructions on how to modify the history of all descendent commits of X by:

* Re-ordering commits.
* Merging one or more commits together.
* Deleting commits.

= Git then rewinds to <commit X>, and re-applies the descendant commits as instructed.

To rebase the last 3 commits (descendants of commit X),
these 2 commands will yield the same result:

57d33al | HEAD

Rebased commits
c3738a7 | HEAD~1 — = S git rebase -i 17dc23c «— Absolute reference

S to commit X

descendants of
commit X

ba08242 | HEAD~2

S git rebase —-i HEAD~3 <— Relative reference
$ to commit X

O-0-0-0

commit X— 17dc23c | HEAD~3

57d33ab | Add test for new feature Merge S git rebase -i 17dc23c or |$ git rebase -i HEAD~7
commits
1 opens the following in Git's default editor (e.g. vim)
c3738a7 | New feature completed R &d pick 0flc3bc add function 1()
e"elrse pick bl241f5 add function 2 ()
(”der'Odeﬁ pick ae7c3la woopsie, forgot to test. Fixed bug in function 1 ()
on top! - : . . O
. . pick 57dc232 fix typo in function 1() !!
ba08242 Cc?mmltted test output file by | delete ! pick ba08242 Committed test output file by mistake.
mistake. pick c3738a7 New feature completed
Vv pick 57d33ab Add test for new feature.
. . . "
57dc232 | fix typo in function_1() !! Re-order ¥ Commands :
and merge # p, pick <commit> = use commit
ith A # s, squash <commit> = use commit, but meld into previous commit
ae7c3la | woopsie, forgot to test. Fixed wit # £, fixup <commit> = like "squash", but discard log message
buginfdhcﬁon 1() # d, drop <commit> = remove commit

there are more commands.

b1241f5 | add function_2()

l manual editing of file.

0fic3bc | add function_1() £ ae7c3la woopsie, forgot to test. Fixed bug in function 1()
£ 57dc232 fix typo in function 1() !!

Commits are re-applied | pick £1241f5 add function 2 () B

in top to bottom order | d ba08242 Committed test output file by mistake.

17dc23c pick c3738a7 New feature completed

L A 57d33ab Add test for new feature

C pick 0flc3bc add function 1()

~-0-0-0-0-0-0-0

pick 0flc3bc
f ae7c3la
£ 57dc232
pick b1241f5
d ba08242
pick c3738a7
s 57d33ab

A\ 4

add function 1 ()

woopsie, forgot to test. Fixed bug in function_ 1()

fix typo in function 1() !!

add function 2 ()

Committed test output file by mistake.
New feature completed

Add test for new feature

Save and close to start rebasing (":wqg" or “:x” in vim).

For squashes, Git will open an editor so you can edit the commit message.

If there are any conflicts, you will ¢ vim <file with conflict> # manual conflict resolution

need to solve them manually. S git add <file(s) with conflict>
$ git rebase --continue

Rebase completed

& Rebase re-writes history -> Commit ID values are now different !

History after the rebase:
[
I

de7c91e@ New feature completed and tested

b1241f§ add function_2()
0flc3b7 i add function_1()

e
S
Q
e
©
(S
>
S
(1)
i
o
()
S
K
Q.
Q.
-
(Vs

Example of interactive rebase file (in full):

pick 0flc3bc add function 1 ()

£ ae7c31lc woopsie, forgot to test. Fixed bug in function_1()
£ 57dc233 fix typo in function_1() !!

pick bl241f5 add function 2 ()

d ba08242 Committed test output file by mistake.

pick c3738a7 New feature completed and tested

£ 57d33ab Well, there was still a bug and a typo.. now fixed

Rebase 17dc23c..0fl1lc3b2 onto 17dc23c

Parent commit (i.e. commit X)
Last descendent

Commands:
p, pick <commit> = use commit
r, reword <commit> = use commit, but edit the commit message
e, edit <commit> = use commit, but stop for amending
S, squash <commit> = use commit, but meld into previous commit
f, fixup <commit> = like "squash", but discard this commit's log message
x, exec <command> = run command (the rest of the line) using shell
break = stop here (continue rebase later with 'git rebase --continue')
d, drop <commit> = remove commit

These lines can be re-ordered; they are executed from top to bottom.
If you remove a line here THAT COMMIT WILL BE LOST.

However, if you remove everything, the rebase will be aborted.

S oS S S S S S S S S o e o o e o o e o
o
~

Note that empty commits are commented out

N\

A

Commands: either the 1-letter shortcut or
the full command name can be used.

/ Commits are re-applied in the order from
top to bottom.

squash vs fixup:
Both will squash the specified commit into
the previous one, the difference is how the
log message is handled:

= fixup: log message the squashed commit is

discarded, the message of commit into which
the squash occurs is kept.

= squash: an editor opens to let you
interactively enter a new log message. It is
pre-filled with the messages of both commits.

You can delete a line to drop a commit
(instead of changing "pick" to "d"/"drop".

\

To abort the rebase, delete all lines in the
file (comments do not need to be deleted).

--fixup commits History before the rebase.

= When you realize you made a mistake in an earlier commit, you can directly tag it as O

_ _ de7c91b | fixup ! add function_2()
a fixup with git commit --fixup=<hash/ref of commit to be fixed>

= Running an interactive rebase with the --autosquash option added, Git will O b1241f2 | fixup ! add function_1()
automatically re-order commits for you. I

O 57d33a3 | do something else

work on the fix for function 1(). Commit it as a --fixup. [
$ git add <file that was fixed> .
$ git commit --fixup=ba0824b O c3738a7 | add function_2()
S l
work on fix for function 2(). Commit it as a --fixup. O .
$ git add <file that was fixed> ERE) add function_1{)
$ git commit --fixup=c3738a7 I
v HEAD~5 —»O 17dc23a
Now we can rebase with the —-autosquash option.
$ git rebase -i --autosquash HEAD~5
_t $
G History after the rebase.
- Commit hash are
i with the ——autosquash option enabled, Git automatically places now different !
g the fixup commits in at the correct position, and marks them as O c23de56 | do something else
> "fixup". No manual editing needed ! | '
L S5 H
(] .
= pick ba0824b add function 1() O 4783b337] add function_2()
GEJ fixup bl241£2 fixup ! add function 1() l
s pick c3738a7 add function 2() O ﬂd%e%a 3dd function_1()
4 fixup de7c91b fixup ! add function_2()
o pick 57d33a3 do something else I
3 HEAD~5 —» O 17dc23a

Rebasing the root commit (first commit of a repository)

Theregular git rebase -i/--interactive command does not allow to edit the first commit of repository.

= To rebase history including the first commit, the ——-root option must be added:

git rebase --root --interactive <branch name>

/

With the --root option, you must indicate the name of the branch
to rebase (or a reference to the last commit of that branch), not the
parent commit (there is no parent to the root commit).

Examples:

$ git rebase --root —-i main
$ git rebase --root --interactive HEAD

e
S
Q
e
©
(S
>
S
(1)
i
o
()
S
K
Q.
Q.
-
(Vs

demo: interactive rebase

exercise 1

The vim cheat-sheet rebase

git reset

git reset — move the HEAD and the active branch to a specific commit

» The git reset command moves the HEAD pointer (and the currently active branch) to the specified commit.

Commits between the former HEAD position and its new positon will be "removed" from history upon the next
commit (but they will remain in the Git database for a little while).

git reset <commit to where HEAD should be moved> ‘

©-0-0-O

57dc232

ae7c3la

b1241f5

0flc3bc

git reset HEAD~2
git reset b1241f5

N

& dev &G HEAD

) 57dc232

ae7c3la

b1241f5

0flc3bc

git commit

N

& dev@HEAD

©-0-0

23d77bc

b1241f5

0flc3bc

& dev<&aHEAD

git reset - move the HEAD to a specific commit

= 3 options allow to specify how the index and working tree should be affected:

e —--soft :resetthe HEAD only (keep staged content in the index).
e -—-mixed: reset the HEAD + the index.

e —-hard :resetthe HEAD + the index + the working tree. < & The --hard option resets
(overwrites) the working tree !

This can lead to data loss if you
git reset --mixed/--soft/--hard <commit ref> have uncommitted changes.

t

mixed is the default value (so you don’t need to actually specify it)

Reset options effects: a check mark indicates elements that are reset.

HEAD

Staged content Files on disk
--soft \/

--mixed \/
--hard \/

v
v

git reset --soft use case: merge the last 2 commits into one

——soft :resetthe HEAD only (keep staged content in the index).

git reset --soft HEAD~2

N

HEAD =) O
| our intention is

O to merge these
2 commits.

Since all modifications are still staged,
. . we can directly create a new commit,
git commit which is the merge of the two commits

/—\ we had earlier.

Lol
(\—I'
- Changes introduced from
N the “removed” commits
I
\-) J are still in the index **. HEAD I:> O

| E I
D9 BN N
O O

O

main

“removed” commits, the latest version of the conflicting

** |f there are conflicts between the content of the 9
lines remains in the index.

0 0

main main

The HEAD was reset, but the
modifications introduced by the
“removed" changes are still in
the index and the working tree.

git reset --mixed use case: clear the staging area from new content

= —-mixed :reset the HEAD + the index.
= Useful to clear the index from newly staged content, e.g. when you staged something by mistake.

git reset --mixed HEAD
git reset HEAD
This represents staged

content: it's in the index,
but it’s not committed.

) s

HEAD = O O HEAD =) O O The newly staged content is now

. | « | removed from the index, because the
dev \ : dev \ : index was reset to its state at the

HEAD position.
I I

O O But any changes made in the working
- - tree is still there: ——mixed does not

modify the working tree, so we are
not losing any work.

main main

git reset --hard use case: reset a branch to a remote

= —-hard:reset the HEAD + the index + the working tree.

= When a remote branch had "forced updates" (i.e. someone changed its history),

a ——hardreset is often a good choice to keep a clean history. . iein/mai
main origin/main

N\/‘

git reset --hard origin/main
* main origin/main |

HEAD = () O O

| * main origin/main CI)

I
C|> /‘ git pull 1C|>
With a =-hard reset, the
C|> O ’ history is much cleaner!
/g

O Additional O ‘
: | /

merge” commit

Someone applied a fixup to the last 2 O We can merge withagit pull, but
commits, so they are now different. | that will leave us with an ugly history!
As a result, history diverges between the O

local and remote "main" branches.

[+d
git reset --hard use case: reset a reset, a merge, a rebase (or anything, really)

= A --hard reset can be used to undo (almost**) any operation, and get back exactly to the previous state *
* as long as Git did not do garbage collection on orphaned commits and deleted them (see two slides further).

Q If you reset —-hard changes that have not been committed/staged/stashed, you will lose your work!
(untracked files are not affected)

= Example: When you thought you're on dev, but you really are on main...
What if | don’t

V'
git reset --hard ba0824b remember this
Our intention is to git reset --hard HEAD~2 git reset --hard HEAD@{1l} hash ?

delete these 2 Git reflog to
commits the rescue... =»
\ =~ (see next slide)
I O O oups, | was on the O

| l wrong branch! Did |
, —
/ \
I \

O O baos24b | <&@ HEAD O Just lose 2 days of O O<:| HEAD

work on main ??

OO O\ OO

N -

dev O deV\O<:IHEAD dev O
O O O

: main * : main * : main *

The Git reflog and the HEAD@{x} relative reference

= git reflog shows the “reflog”: a chronological log of all operations that were performed on a repository.

git reflog

$ git reflog

11d4dc8| (HEAD -> main, dev) HEAD@{O}: merge dev: Fast-forward
5061456 |HEAD@{1}: checkout: moving from dev to main

> ||11d4dc8| (HEAD -> main, dev) HEADQ@{2}: commit: Update README
5061456 |HEAD@{3}: checkout: moving from main to dev

5061456 |HEAD@{4}: commit: Add README file

0£84d17|HEAD@{5}: commit (initial): Initial commit

/

Commit IDs of commit at HEAD position

v

= The HEAD(@ {x} notation indicates the positon of the HEAD pointer relatively to the reflog.

" |t can be used as a commit reference, e.g. git reset --hard HEAD@{1}.

HEAD@ {0} Current position of HEAD.
HEAD@Q {1} Positon of HEAD 1 operation ago.
HEAD@Q {2} Positon of HEAD 2 operations ago.

HEADQ {x} Positon of HEAD x operations ago.

e
S
Q
e
©
(S
>
S
(1)
i
o
()
S
K
Q.
Q.
-
(Vs

e
S
Q
e
©
(S
>
S
(1)
i
o
()
S
K
Q.
Q.
-
(Vs

What happens to unreachable/orphaned commits ?

= When a commit (or a group of commits) are no longer part of a branch or referenced by a tag,
they are said to be unreachable/orphaned. E.g. in the diagram on the right, aftera git
reset, two commits (dashed circles) are now unreachable/orphaned.

» Unreachable commits remain accessible in Git's database for a while**, until they are
garbage collected (i.e. deleted) by Git.

= To retrieve content from an unreachable/orphaned commit, you can:

* Display its content with git show <orphaned commit ID> |

 Checkitoutinanew branch: git switch -c¢ <orphaned commit ID> |Or
git checkout -b <orphaned commit ID>

e Checkit out in detached head mode: git checkout <orphaned commit ID>

* Reset your current branch toit: git reset --hard <orphaned commit ID> |
Warning: this last option might itself create orphaned commits. In addition make sure you
have a clean working tree, otherwise uncommitted changes will be lost).

= |f you don't know the hash of an orphaned commit, you can find it by looking at the output of
git reflog -all |.Thisisa log of all operations that that were done by Git, and all
commits will be referenced in there.

Lol

<=’

Pam

** Default “prune” time

= |f you want to force-delete all orphaned commits (and associated data), run the following
command sequence. Warning: only do that if you understand why you're doing it.

git reflog expire --expire=all --all
git gc --aggressive --prune=now

By default, unreachable commits (and other objects
are garbage collected after 14 days). This setting can
be changed with the config option:

git config gc.pruneExpire 2.weeks.ago

git config gc.pruneExpire 3.months.ago

History overwrite warning !

Commands illustrated in this section (in particular git rebase and git reset)resultina
modification of a repo’s history.

When pushed to a remote, this can cause various levels of “inconvenience” to other people working on
the same project.

= |deally, do this type of operations before pushing to a remote (especially on shared branches).

= On your own branches (i.e. not shared with others), you can rewrite history as much as you want.

= To push a branch with history modifications to a remote, you need to:

* Use “force” push to overwrite the version on the remote: git push --force

e If the branch is shared, it might be a good idea to coordinate the update with other people working on
the repo, as they will likely needtodoa git reset --hard origin/<branch name> on

their local repo.

= (Try to) never rewrite a “production” branch shared with the outside world.
Typically this would be the “main” branch.

Demo: rewriting history on a shared branch git push --force and git reset --hard

Here we will show the implications of rewriting history on shared branch,
both from the perspective of the person that makes the rewrite, and the
other users of the repository.

® |n our shared Awesome Animals Awareness repo, the history on main will be
overwritten (git push —-force).

" Youcanthendoa git reset --hard origin/main to reset your main
branch to the new version on the remote.

exercise 2
The big reset

git checkout

The "detached HEAD" state explained

git log --all --decorate --oneline --graph

. . . .)
Reminder: checkout the entire state of an earlier commit . HEAD > dev) Add tests for import module

Rename import module file

Add new module for file import

" Checking out a commit will restore both the working tree main) Improve code documentation
. . JeO (tag: v1.0.2) Improve tests
and the index to the exact state of that commit.

0 Add new module for file export
. . . tag: v1.0.1) Add tests
= |t will also move the HEAD pointer to that commit. Add import file() function
f Add random class
tag: v0.0.1) Add first version of code

git checkout <commit reference> First commit. Add README

git checkout

d2c319%e dev) Add tests for import module
E le: Rename import module file
Xample: Add new module for file import
. * main) Improve code documentation
$ glt checkout d2c319e : tag: v1.0.2) Improve tests
it checkout HEAD~10
$ GJ_ '0 Add new module for file export
$ git checkout v2.0.5 HEAD, tag: v1.0.1) Add tests
Add import file() function
Add random class
tag: v0.0.1) Add first version of code
 First commit. Add README
= But you will enter a "detached HEAD" state.... —> | $ git checkout ba08242

Note: checking out 'ba08242'.

You are in 'detached HEAD' state. You can look
* To get back to a “normal” state: around, make experimental changes and commit

git switch <branch> them, and you can discard any commits you make
in this state without impacting any branches
by performing another checkout.

I”

-
v
©
£
£
[
(2

Detached HEAD: when HEAD points directly to a commit instead of a branch

" Aftera git checkout <commit> command, the HEAD points directly to a commit rather
than a branch: this is known as detached HEAD state.

git checkout ba0824a Add 2 commits
These commits do not
devel I:> O devel I:> O devel I:> O belong to any branch !
I I I ;ST TTTTTTTETTE S
@ (O <&main * G HEAD O O« main O O (<« HeAD
N\ | \\ | \\ |

O O 00

|
ba0824a O ba0824a O & HEAD ba0824a O
| |

O . 0

main

—
N -

What if | go back to a “real” branch ? =

Detached HEAD state meanwhile, somewhere
in the object store...

Daddy, did you
see grandpa ?

git switch main

devel m ~ e , gj &

N 6%
O main devel = O 0‘?73 006
e - | a5 G

I U4
O O !O@HEAD O O<:|main<:lHEAD
N\ | \ |

O
S A | devel = C|> IQmain < HEAD
ba0824a O These commits do not baog24a O O O O <« tmp
N

(@)

w
by
w
oo
o]

~

T ——————

\O_

—
—— -

| belong to any branch ! |

ba0824a O

* Commits that are not longer referenced by a branch or a tag are not shown anymore by git log. O
* These commits are still in the object store (until they get garbage collected), but can only be
reached directly through their commit hash - or reflog references HEADQ {x}.

Creating a new branch while in detached HEAD state

= To preserve commits created in detached HEAD state, a new branch can be created at any time while
we are in “detached head” state. After the branch is created, we are no longer in detached HEAD state.

git switch —-c/--create <branch name>
git checkout -b <branch name>

In “detached head” state On a regular branch (here “tmp”)

devel ::)O Qmain devel ::)O main
I I 7
O O O «Heap O O O« tmp*<HEAD
N N

ba0824a O ba0824a O

Note: git switch -c isthe modern alternativeto git checkout -b in Gitversions>=2.23

Detached HEAD $ git checkout e35e2a4
Note: switching to 'e35eZad’'.
" In praCtice; Git Wi“ give you a IOt You are in 'detached HEAD' state. You can look around, make
of Warnings and advice when in experimental changes and commit them, and you can discard
any commits you make in this state without impacting an
detached HEAD state: Y Y F Ea

branches by performing another checkout.

If you want to create a new branch to retain commits you
create, you may do so (now or later) by using -c with the
switch command. Example:

[:$> git switch -c <new-branch-name>

HEAD is now at e35eZ2a4 removed from git file

$ git checkout main

Warning: you are leaving 2 commits behind, not connected to
any of your branches:

0860b65 another commit outside of branch
0dc47b9 where will that lead us ?°?

If you want to keep them by creating a new branch, this may
be a good time to do so with:

Git reminds you of the
E:$> git branch <new-branch-name> 0860b65 hash of the commit, in

case you don’t have it.
Switched to branch 'main'

the git stash

Git’s “cut and paste” functionality

When workflow interruption strikes ...

Sometimes we quickly need a clean working tree, but without losing un-committed changes already made
to our files. For instance:

= Work on in a different branch (e.g. fix a bug) before finishing work on the current branch.

= Move current edits to another branch (e.g. you started to work in the wrong branch).

= Do arebase (rebase with un-committed is not allowed).

git stash =) Saves un-committed changes in the working tree (both staged and un-staged) to
a “temporary commit®, Then resets the working tree to the current HEAD position
(i.e. the last commit in your current branch), leaving a clean working tree.

git stash pop | =) Restores stashed modification by merging them into the current HEAD (This can
potentially require manual conflict resolution).
The restored content is deleted from the stash.

Example: make edits on a different branch while having work in progress.

-~ « Un-committed changes
O

O O O feature *
'y

0—0
o—o0—-0Zo *
T
_________________ L
0—0—C
0—0 ofg 2

stash stack

git stash

stash stack [(C) stash@{0} git switch devel

______________________ ... make edits to devel ...

git commit ...

git switch feature
git stash pop

stash stack

Example: move edits to different branch (e.g. started working on the wrong branch).

/O—O devel

O—O0—0—0
x

main *

un-committed changes stash stack

git stash
git switch devel

git stash pop

O O O Depending on your edits (if they do not

main stash stack overwrite ? file on the branc.h you are switching
to), you might be able to switch branches

directly without having to do and stashing.

Additional info about git stash...

= More than one set of changes can be stashed (see next slides).

= Although stashed items can in principle remain in the stash for a long time, it’s best to view it as a
temporary location. Don’t turn it into an alternate development branch!

»= The content of the stash stays local (even if you git push), so there is not backup for it on a remote.

» Anything done with git stash can also be achieved using branches (i.e. create new temporary
branch and later rebase/merge its content), it's just more convenient to do it with git stash.

» By default untracked files are not stashed. To stash them, the -u/--include-untracked option
must be added.

= By default, both staged and un-staged modifications are stashed. However, the distinction between
staged and unstaged changes is lost upon applying the stash and all modifications will be un-staged.
Note: to not include staged changes, the —-keep-index option can be used.

= |f needed, the content of the stash can be deleted with git stash clear ‘

" git stashisactually ashortcutforgit stash save
(save is the default action for the git stash command).

e
S
Q
e
©
(S
>
S
(1)
i
o
()
S
K
Q.
Q.
-
(Vs

Using multiple stash slots

" git stash can actually store multiple stashes.
= git stash pop isashortcutforgit stash apply +git stash drop
= specific stashes can be accessed with stash@{x} (where x = stash index)

= git stash clear deletes all stashes.

git stash git stash git stash pop
stash stack r\ r\ r\
(n stash@{0} (t stash@{0} (l stash@{0} (. "V stash@{0}
() stash@{1} () stash@{1} () stash@{1}

i (::n stash@{2}
L
S
o .
© git stash apply git stash drop
S. (git stash apply stash@{0}) (git stash drop stash@{0})
E -
5 (() stash@{0} ((stash@{0}
qE, < 1 (::n stash@{1l} | > (::n stash@{1}
o - :
Q git stash clear | (1 stash@{2} git stash drop
>
(7, stash@{1l}

e
S
Q
e
©
(S
>
S
(1)
i
o
()
S
K
Q.
Q.
-
(Vs

List the content of the stash

= List the content of the git stash: git stash list

Example:

$ git stash list
stash@{0}: WIP on main: 86eae5c Adds new file
stash@{1l}: WIP on main: 86eae5c Adds new file

= Show the content of a specific stash item. By default, stash@{0} is shown.
Adding the —p option displays the exact content (diff view) of a stash item.

git stash show
git stash show -p # detailed diff view of stash item.
git stash show —p stash@{x} # show a specific stash item.

git stash command summary

command description

git stash stash uncommitted changes to a new stash item in the stash@{0} spot.
git stash save "message” An optional “message” can be added.

git stash pop Shortcut for apply + drop.

git stash pop stash@{x} By default, stash@{0} is popped. Other stashes can be popped with stash@{x} notation.
git stash apply Merge stashed item into current branch.

git stash apply stash@{x}

git stash drop Delete item from stash. By default, item stash@{0} is deleted.
git stash drop stash@{x}

git stash list List content of stash.

git stash show Show summary view of stashed item content.
git stash show -p Show detailed view of stashed item content.
git stash clear Delete all items from stash.

e
S
Q
e
©
(S
>
S
(1)
i
o
()
S
K
Q.
Q.
-
(Vs

git tags

Label important commits

Why use tags ?

Tags are “labels” used to annotate important commits. (8) ¢ devel
= Typical use case: tagging commits corresponding to versions. E.g. @ K main
1.0.7,v1.0, v2.1, etc. (e)@avl.2
(d)avl.l
There are 2 types of tags: ©
= Lightweight tags - pointers to a commit (like a branch). (b) & v1.0

= Annotated tags - pointers to commits with additional metadata:

= Tagger (person who made the tag).
= Date and time.
= Message.

Example of annotated tag metadata commit
tag 12.04 Author: ...
Tagger: Alice Smith <alice(@redqueen.org> Comm?tter:
Date: Tue Feb 22 20:44:27 2022 +0100 EO;"""'“ MSg: ..
ate: ...
. . i Parent:
Tag message == Version 12.04 LTS (Precise Pangolin) Tree: (282171
Commit to which the tag is pointing = commit 45d56fa3c75e5e6a67d067e9b8eaecl679d3806e7 ¢

Top tree

Creating tags If no commit reference is specified, the tag is
/ applied to the current HEAD commit.

Lightweight tag: git tag <tag name> <commit reference> ‘

Annotated tag: git tag -a -m “message” <tag name> <commit reference> ‘

1

Having a message is compulsory for annotated tags (just like for commits).

Examples:
$ git tag 1.1.0 illegal characters in tag and branch names
$ git tag 1.0.9 ba0824a Spaces and characters such as ,~~:?*[]\ are not
$ git tag 1.0.8 HEAD~3 allowed in tag and branch names. It is recommended
to stick to lowercase letters, numbers, “-”, and “.”. |
[]

S # Create an annotated tag:
$ git tag -a -m "v20.04: Precise Pangolin" 20.04

¥ HEAD v HEAD ¥ HEAD
main = (e) main = (e) & 1.1.0 main = (e) & 1.1.0

@ git tag 1.0.9 ba0824a @
git tag 1.1.0 git tag 1.0.8 HEAD~3

@

d)
baos24a | () baos24a | (C) baog24a | (c) €2 1.0.9
5 £ N 5 " Haros

Listing tags Examples:
$ git tag
1.8.4
= List all tags (sorted alphabetically): 165
1.8.5-rcl
glt tag 2.0.5
$ git tag -n
. . 12.04 v12.04 LTS Precise Pangolin
= List all tags and show their message (for annotated tags): 12.10 v12.10 Quantal Quetzal
git tag -n it tag -1 1.8.5%

S g

1.8.5

1.8.5-rcl

= List only tags whose name matches a specific pattern:
$ git show 2.0.5

git tag -1 <search pattern> tag 12.04

Tagger: Alice Smith <alice@redqueen.org>
Date: Tue Feb 22 20:44:36 2022 +0100

ifi . . v12.04 LTS i 11
= Show content of a specific tag (annotation and commit content): bES Precise Fangotin

commit 1ba62733c75e5e6a67d067e9b8eael679d3806e7

glt show <tag name> Author: Mad Hatter <clocks@wonder.org>
Date: Tue Feb 22 20:35:09 2022 +0100

Commit message...

diff --git a/file b/file

= The “adog” command will also show tags: git log --all --decorate --oneline --graph

HEAD -> dev, tag: 1.0.0, master) Switch to new output format
. . tag: 0.2.1) fix: add check for missing files
glt log --all --decorate --oneline —-graph Improve output graph rendering

tag: 0.2.0) Add support for FASTA files
Add documentation

tag: 0.1.0) First version of pipeline
Initial commit

Sharing tags (push tags to a remote)

By default git push doesn’t upload (push) tags to remote servers.

= You can push a specific tag with: git push <remote name> <tag name>

Example:
$ git push origin v2.3

" You can push all tags by adding the --tags flag to the push command.

Example:
$ git push origin --tags

Delete tags

= To delete a tag from your local repository: git tag -d <tag name>

Example:

$ git tag -d v3.2
$ git tag -d 12.04

Z!E This will not remove the tag from remotes !

origin is the default name used for remotes. If your remote has a
different name, you should replace origin with its name.

= To delete atag from aremote: git push origin --delete <tag name>

Note: this is the same command as for deleting a branch from a remote.

Example:
S git push origin --delete v3.2

Checking out tags (revert the working tree to a specific tag)

= Tags are references to a commit, so you can use git checkout <tag> to revert the working
tree to its recorded state at the specified tag.

Example:

$ git checkout v2.0.1
$ git checkout 0.8.2

Reminder

Performing such a checkout will put your repository in detached HEAD state:

" You can look at (or use) the “old version”, then switch back to a regular branch.
= |f you plan to make changes and add commits to an older version, you can either:

* Create a new branch rooted at your version tag.
git switch -c <new branch> <tag> oOr git checkout -b <new branch> <tag>

* Tag the (branchless) new commit your make so it doesn’t get garbage collected.

exercise 3
The backport

exercise 4

The treasure hunt

Note: this exercise can be done as exam to the course. € This exercise has helper slides

Introductory notes

While this exercise is somewhat gamified, it nevertheless covers many of the
important operations and uses a collaborative workflow that you would encounter
while doing real work:

& personal-branch
(feature branch)

* Each of the quests you will complete in this exercise can be seen as the
equivalent of adding a new feature to a software or data analysis pipeline.

* Completing a quest, merging your work into the main branch and adding a tag,
would be the equivalent of making a new release of your work/software.

About the branches used in the exercise:

= main is the production branch, i.e. the branch on which only final, production ready, material is published.
Do not work directly on the main branch.

= Short-lived personal branches (feature branches) will be created by each team member to add their work,
before merging it into main.

= As this is an exercise, and we do not have much time, the personal branches will only contain 1 (or sometimes 2) commits
before they get merged into main, but you can imagine that in a real application more commits would be added.

Exercise 4 help: branch — rebase — merge sequence

= One of the objectives in the exercise is to keep a clean and readable history while collaborating.

= This is a suggested procedure when working on a new “feature” (i.e. a new quest in the context of the exercise).

= |n this example, Alice is the first team member to push her changes to the remote.

& feature-cp main =)) €a feature-cp main =)
main) main)
When the feature is
create new complete: merge personal
personal branch branch into main push changes to remote .
GitHub
> > >
a@a work on personal “g’ “gﬂ 9
[branch [T [T GitLab
At this point the personal At this point other group members

branch can be deleted. can update their local repo.

Exercise 4 help: branch — rebase — merge sequence

= Bob is the “first-mate” of the crew.

= He completed his work on his personal branch feature-fm, and now wants to
merge his work into main.

= He starts by retrieving changes made by Alice to main:

& feature-fm & feature-fm

main)

pull changes from

main E> remote on team branch
>
q%p i%i
AT aia
n L} /
n n

merge personal branch
into main branch

feature-fm o) mainc) main =)

push changes to

remote
>
GitHub
At this point the personal i@a “
branch can be deleted. Qv GitLab

<2 feature-fm

main =

rebase personal branch

~=p

>
(TN

To indicate a new
“release”, a tag is added.

:
main)) @ v1.1.0

When a quest is completed,
someone adds a tag to
indicate a new “release”

LY,

GitHub
At this point other “
group members can)
update their local repo. GitLab -

Exercise 4 help: creating a new repo on GitHub

1. In your GitHub account, go to Repositories and [0 Overview] Repositories 4 [Projects @ Packages Q
- T

click on New (green button). p
(g) Find a repository... Type ~ Language ~ Sort ~ '\ ,\,

N T) =~

C)
L Gltﬂuii

2. Create a new repo: I» Create a new repository

A repository contains all project files, including the revision history. Already have a project Import a

° Enter‘ a Repository name. repository elsewhere? repository.
* Add a short Description. hevesi
epository template
° Make the repo Public (defaU|t). Start your repository with a template repository's contents.
e el . . . No template
* Do not initialize the repo, as you will import data from
an existing repository (leave all boxes unchecked). Owner * Repository name * Q

* Click Create Repository. == robinengle -

Great repository names are short and memorable. Need inspiration? How about solid-spork?

/ treasure_hunt Vg

Description (optional)

3. Follow instructions to push an existing repository....
Note: the main branch’s name is already “main”, so you can skip “git branch -M main”.

® g Public
M Anyone on the internet can see this repository. You choose who can commit.

Quick setup — if you've done this kind of thing before .
o) Private
or HTTPS SSH git@github.com:robinengler/treasure_hunt_test.git fin} You choose who can see and commit to this repository.

Get started by creating a new file or uploading an existing file. We recommend every repository include a README, LICENSE, and .gitignore.

Initialize this repository with:

...Or create a new repository on the command line Skip this step if you're importing an existing repository.

echo "# treasure_hunt_test” >> README.md D [Add a README file

git init e i inti i

o o Cr This is where you can write a long description for your project. Learn more. For exercise 4 dO not

git commit -m "first commit" L)

git branch -M main [J Add gitignore initialize your new

git remote add origin git@github.com:robinengler/treasure_hunt_test.git Choose which files not fo track from a list of templates. Learn more.

git push -u origin main repO W|th any f|le-
[] Choose a license

A license tells others what they can and can't do with your code. Learn more.
...or push an existing repository from the command line
_—-=uEa.,

-
git remote add origin git@github.com:robinengler/treasure_hunt_test.git i= N,
git branch -M main (Create repository)
; (4
git push -u origin main - -

Exercise 4 help: adding members to a GitHub repo

GitHub

1. On the homepage of the repo on 0 robinengler/ treasure_hunt_test pusic Q l
GitHub, select the Settings tab. P i

¢» Code (©) Issues 19 Pull requests (> Actions [T Projects 0 Wiki @ Security |~ Insights {\@3 Settings ,,
. S

2. In the Settings tab, click Options Settings
on Manage access.
$ Manage access Repository name
treasure_hunt_test Rename

Security & analysis

[Template repository

Branches Template repositories let users generate new repositories with the same directory structure and files. Learn more.
3. Add your team members by clicking Oions Who has access
on Add people (green button) and
. . . Manage access PUBLIC REPOSITORY [O] DIRECT ACCESS A
entering their GitHub user name. B o
. . This repository is public and visible to 1 has access fo this repository. 1
Security & analysis
anyone. collaborator.
Branches Manage
Webhooks ,,——~~\
l Add people
Notifications Manage access S -4
Sty -7_.7—’
Integrations O Selectall Type ~
Deploy keys
Q, Find a collaborator...
Actions
Roman Mylonas o
Environments o ’ rmylonas * Collaborator u

Secrets

GitLab slide ...

Exercise 4 help: creating a new repo on GitLab

A

GitLab

1. In your GitlLab account, D+ &
(B 81 =3l

—--~
L N

TN\

. . . \
navigate to the Projects Projects SO . oo [
Q_ Search or go to... ..___——’
ta b (use the me n u O n th e — Yours 30 Starred 7 Pending deletion Filter by name Language v Name ~
left) and click on New | Ez=e ¢I
. S0 Groups
proJeCt' [Issues 1 A siBGittraining / imal vess @ Owner © o T‘j ‘j z“i: oo
pdated our ago
Create new project
2. Select Create blank ® ® @ Create blank project
- Create a blank project to store your files, plan your work, and collaborate on code, among other things.
project.
2N " P Project name &
O /\@,

‘ Treasure Hunt |

Project URL G

3. Fill-in the new project’s details:

* Enter a Project name.

* Select a namespace: usually this will be your username.

* Make the repo Public.

* Do not initialize the repo with a README, as you will
import data from an existing repository (uncheck box).

* Click Create project.

\ 4

Project deployment target (optional)

Select the deployment target v |

Visibility Level 3
() & Private

© @ Public

The project can be accessed without any authentication.

Project Configuration

() Initialize repository with a README
Allows you to immediately clone this project’s repository. Skip this if you plan to push

[] Enable Static Application Security Testing (SAST)
Analyze your source code for known security vulnerabilities. Learn more.
eE= e,
l Create project) cancel
~ _ o

https://gitlab.com/ | Pick a group or namespace v

Must start with a lowercase or uppercase letter, digit, emoji, or underscore. Can also contain dots, pluses, dashes, or spaces.

Project slug

/ | treasure-hunt

Project access must be granted explicitly to each user. If this project is part of a group, access is granted to members of the group.

For exercise 4, do not
initialize your new
repo with any file.

T -

GitLab slide ...

Exercise 4 help: adding members to a GitLab repo GitLab

1. Inyour Project menu, select 2. On the Members page, click on Invite members.
M
the Manage sub-menu, then I 2 ¥ 4
select Members. P S, ™4
Project members Import from a project Invite a groupl\)
You can invite a new member to awesome-animal-awareness or invite another group. N
D 1 Members 2
D v | Filter members Q Account v 1=
Q, Search or go to...
Account Source Max role Expiration Activity
Project
CRRY RovinEngter wsyou 264 SIB Git training Owner EohaionaseIES| Acowsegramed: Jar 30, 2074
A awesome-animal-awareness W)Y @rengler TUUTT T Lastactivity: Jan 31, 2024
5¢ Pinned >
&8 Manage v <b Invite members X
ACt'IVity You're inviting members to the awesome-animal-awareness project.
M b }9 Username, name or email address
embers .
’:':I 3. Enter the username of the I::}\ { smoren X
Lalecls person(s) you want to add. Select members or type email addresses
. Selectarole
Plan ’ For exercise 4, select Developer
.. E;} Developer v
</> Code > as role for the people you invite. —
Read more about role permissions
g Build > Click Invite. Access expiration date (optional)
@ Secure > \ B &) @
/’—--~.'\
©) Deploy > Cance(Y
\ﬁ_ -

a look under git's hood
The Git object store

©
=
Q
=)
©
(S
>
S
(1)
i)
o
()
S
9
Q.
Q.
=
(Vo]

The Git object store Ml .git directory

HEAD
branches/

* The "object store" is where Git stores the data and contig

i . description
metadata of the tracked files and commits. hooks/

info/
" |t'slocated in .git/objects » |objects/

refs

= Git stores data in 4 object types, all saved in the object store [.git/objects]:

Blobs: binary, compressed, file that stores the content of a file.
“blob” stands for “Binary Large OBject” (even if the object is not necessarily large)

Trees: Dictionary linking file names to blobs for a given directory.

Commits: metadata of each change introduced into the repository:
author, commit message, state of files, etc ...

©
=
Q
=)
©
(S
>
S
(1)
i)
o
()
S
9
Q.
Q.
=
(Vo]

Tags: name (e.g. software version) that points to a specific to a commit.

e
S
Q
e
©
(S
>
S
(1)
i
o
()
S
K
Q.
Q.
-
(Vs

Blobs (Binary Large OBjects)

= File that stores the content of a file (in a binary and compressed format).

= Does not store any metadata about the file, not even the file's name.

 two files with the same content have the same blob/SHA-1.
* two files with the same blob/SHA-1 have identical content. This allows fast comparison!

= Blobs are named after their content's SHA-1 hash*, and stored in the object store [.git/objects].

.git/objects/fa/263b8bb9%291aaa5059dad78bb38b63£4318c62
.git/objects/4a/b7e6dbb9b1dd73a3e0292e£f1d1b2909d107309

For performance reasons, the 2 first characters of the SHA-1 hash are used as sub-
directory name (this avoids having too many files in the same directory). The remaining
38 characters are the name of the file.

= Using a hash as file name creates so-called “content addressable” storage: the content of the file defines
its location. This avoids any risk of losing content when overwriting files, since any change in a file will
result in a new hash, and hence a new location.

* almost: Git adds a few header bytes to the content when computing file SHA-1 values.
you can get the SHA-1 hash computed by Git with: git hash-object -t blob <file to hash>

e
S
Q
e
©
=
>
S
(1)
i
o
()
=
K
Q.
Q.
-
(Vs

Commands in shell

Content of working tree

$ cd test project

$ echo "This is just a demo
project" > README.md

$ git init

.git
README . md

'

$ git add README.txt

.git
README . md

S echo "Free as in
freedom" > LICENSE. txt
S git add LICENSE. txt

7

Content of object store (.git/objects)

.git/objects/
info/
pack/

.git/objects/

info/

pack/
£f5/e333dff2cf029ec213cedbae9c94e99381£fb6

SHA-1 hash of "This is just a demo project” 1

.git
README . md
LICENSE. txt

$ cp README.md README copy.md
$ git add README copy.md

/7

.git
README . md
LICENSE. txt
README copy .md

.git/objects/

info/

pack/
£f5/e333dff2cf029ec213cedbae9bc94e99381£fb6
b0/282337246891c91e2eb67c87£0cea0923107ac

SHA-1 hash of "Free as in freedom" 1
.git/objects/
info/
pack/
f5/e333dff2cf029%9ec213cedbae9c94e99381fb6

b0/282337246891c91e2eb67c87£0ceal0923107ac

Nothing added to object store!
Because content of filel and file3 is the same.

Trees

* Tree = dictionary/table linking blobs to filenames - at a given directory level.
= Sub-directories are also tree objects, referenced by their parent directory.

= If two trees have the same hash, then their content is identical — fast comparison as
there is no need to look at individual files in the tree's sub-directory.

= The top tree (root of working tree) can be seen as a snapshot of the entire file content
at a given time.

Table/dictionary that links file names and
subdirectories to their SHA-1 value.

_E; 2 test_project =———> Top tree |57dc232 | (root directory) —

L S

% - B src README.md || 5e333d | ——— |blob| content of README.md

£ =] main.py LICENSE.txt |[bo28233] =——> |)

> — blob| content of LICENSE.txt

© =| fun.py src/ 38405¢6

= —~

CEJ — |=| README.md ‘ T\

K7 _ (=) LICENSE.txt tree 38405¢6] | main.py | | ba29oed | = |blob] content of main.py
o (src/ directory) -)

Q n. o

3, LY ddo8te blob| content of fun.py

e
S
Q
e
©
(S
>
S
(1)
i
o
()
S
K
Q.
Q.
-
(Vs

Trees

= Trees are saved in the object store, as a file named after their hash — just like blobs.

Top tree | 38405c6

content of object store [.git/objects]

.git/objects/
info/
pack/

P 38 /405c63£62a3cbblbl4e621lc2c£4c94e85d88b9
81l/5de0aff2e7b3a6ab90e967102b9745594be7e3
b0/282337246891c91e2eb67c87£0ceal0923107ac
ba/2906d0666cf726c7eaadd2cd3db615dedfdf3a
—r 5 /c30998ad0a9e8e46c5ebbac65a2£0823af15a0

dd/598fe7a9£70724£115£3c£97b5879c0al0a3b2

README.md | | f5e333d
LICENSE.txt b028233
src/ 38405c6
tree c5c§099

main.py ba2906d

fun.py dd598fe

£f5/e333dff2cf029%9ec213cedbae9c94e99381fb6

44

44

blob

Commits

= Commit objects are lightweight:

* they are a collections of metadata.
* they do not contain the data itself.

Content of a commit -

Author: Mad Hatter \
Committer: Alice ID of commit

Commit msg: Fix bug in function foo() []
St LT ST TG SHA-1 [—>|815de0aff2e7b3a6ab90e967102b9745594be7e3

Parent:| 45d56fa
Tree: | 57dc232

e
S
Q
e
©
(S
>
S
(1)
i
o
()
S
o
Q.
Q.
-
(Vs

= Commits point to a Tree object — the top tree object of the Git index content at the time the commit was made.
This is how Git can retrieve the state of every file at a given commit.

= Commits point to their direct parent — forming a DAG (Directed Acyclic Graph) where no commit can be modified
without altering all of its descendants.

root commit | fe3306a commit | 45d56fa commit | 815de0a
Author: ... \ Author: ... \ Author: Mad Hatter \
Committer: ... Committer: ... Committer: Alice
Commit msg: ... Commit msg: ... Commit msg: Fix bug in function foo()
Date: ... Date: ... Date: 24.02.2020 10:43
Parent: none Parent: | fe3306a Parent:| 45d56fa
Tree: | bd654b1 Tree: Tree:

! 1 !

.T:" Top tree | bd654b1 Top tree | 28ad171 Top tree|57dc232 | (root directory) —
= Y
= /I README.md | | f5e333d | ==—=t=> |plob

—\
E / LICENSE.txt | [bo2s233| ———>
> / blob
1 /! src/ 38405¢6
c 7
CEJ / ‘

7

@ == —————————- oo J--- tree (38405¢6 | | main.py || ba2906d > |blob
g__ ! Top tree = I (src/ directory) R
3 1 snapshots of entire content ! fun.py dds98fe ~ lblob
(7, e e e e —————

Commits

= Commits are saved in the object store, as a file named after their hash — just like blobs and trees.

Content of commit content of object store [.git/objects]
Author: Mad Hatter \\ Ig';tfbjecr's/
. . info
Committer: Alice] _] pack/
Commit msg: Fix bug in function foo() | Commit saved in object store, |35,405c63£62a3chb1b14e621c2cE4c9485d88b9 < tree
. ; named after its hash =81 /5de0aff2e7b3a6ab90e967102b9745594be7e3
Date: 24.02.2020 10:43
_ b0/282337246891c91e2eb67c87£0cea0923107ac <« blob
Parent:| 45d56fa ba/2906d0666cf726cTeaadd2cd3db6l5dedfdf3a <=
Tree: 57dc232 c5/c30998ad0a9e8e4d46c5eb6ac65a2f0823af15a0 <
dd/598fe7a9£f70724£f115f3c£97b5879c0al0a3b2 <=
£5/e333dff2cf029ec213cedbae9bc94e99381fb6 <=

git commit triggers the creation
of a commit object

= = |n our example, the object store has now 7 objects:

= command in shell « 4 blobs — one for each file tracked in the repo.

= $ git commit -m "Fix bug in function foo()" » 2 trees —src/ and the root of the working dir.

[main (root-commit) 815dela] Fix bug in function foo() o :)

E. 4 files changed, 4 insertions (+) 1 commit. ﬁ test_project

- create mode 100644 LICENSE. txt 'ﬁ

S create mode 100644 README.md sre

c create mode 100644 src/fun.py . .
main.

GEJ create mode 100644 src/main.py Py

Q fun.py

= - (=] README.md

7 - (2] LIcENSE txt

The Git index

When a file is added/updated to
the index, its content gets stored
as blob in the object store.

Li objects

0f1c3b71...

7cch642c...

cb1a054c...

» The Git index is a binary file located in [.git/index].

= The index has no copies of the data, it's only a table
linking file names with blobs.

git add README.txt

git commit

vl

N

computes the SHA-1 hash for
the top tree of the index, and
uses it in computing hash of
commit.

— — e
README.txt | cb1a054c... 0f1c3b71... 0f1¢c3b71...
script.py 83f2d93e... 7cc5642¢. .. 7cc5642¢. ..

— — e
README.txt | cb1a054c... cb1a054c... 0f1c3b71...
script.py 83f2d93e... 7cco642c... 7cch5642c...

e \

README.txt

script.py

cb1a054c...

cb1a054c...

cb1a054c...

83f2d93e...

7cch642c...

7cch642c...

Thank you for attending this course Swiss Institute of

Bioinformatics

