Version control with Git - first steps Swiss Institute of

Bioinformatics

WWW.Sib.swiss

Robin Engler
Vassilios loannidis

Lausanne, 16-17 Oct 2024

First steps with Git: course outline

" |Introduction to Version Control Systems and Git.
= @Git basics: your first commit.
= @Git concepts: commits, the HEAD pointer and the Git index.

= @Git branches: introduction to branched workflows and collaborative workflow
examples.

= Branch management: merge, rebase and cherry-pick.
= Retrieving data from the Git database: git checkout.
= Working with remotes: collaborating with Git.

= GitHub: an overview.

Course resources

Course home page:

Google doc:

Questions:

Slides, exercises, exercise solutions, command summary
(cheat sheet), setting-up your environment, link to
feedback form, links to references.

https://gitlab.sib.swiss/rengler/git course public

Register for collaborative exercises (and optionally for exam),
FAQ, ask questions. Link sent via email before the course.

feel free to interrupt at anytime to ask questions, or use
the Google doc.

https://gitlab.sib.swiss/rengler/git_course_public

Course slides

= 3 categories of slides:

[Regular slide
[Red]

Supplementary
material
[B'UE]

Reminder slide
[Green]

Slide covered in detail during
the course.

(r]) - A
GitHub-specific GitLab-specific\a\
[Purple] [orange]

i
i

Some slides are specific to GitHub or GitLab.

Material available for your interest, to read on your own.

Not formally covered in the course.
We are of course happy to discuss it with you if you have questions.

Material we assume you know.
Covered quickly during the course.

Learning objective

= Learn the concepts behind Git.

= Understand when and why to use each command.

= Collaborative workflows using GitHub/GitLab.

= Learn to re-write history (day 2).

THISIS GIT. IT TRACKS COLLABORATIVE. [JORK
ON PROTECTS THROUGH A BEAUTIFUL
DISTRIBUTED GRAPH THEORY TREE. MODEL.

f COOL. HOW DO LE.USE IT?

NO IDEA. JUST MEMORIZE. THESE. SHELL
COMMANDS AND TYPE THEM TO SYNC LR
IF YOU GET ERRORS, SAVE. YOUR WORK
FLSEWHERE, DELETE THE PROJECT
AND DOWNLOAD A FRESH COPY.

\ﬁ

source: https://xked.com/1597

https://xkcd.com/1597

Command line vs. graphical interface (GUI)

= This course focuses exclusively on Git concepts and command line usage.

Many GUI (graphical user interface) software are available for Git, often

integrated with code or text editors (e.g. Rstudio, Visual Studio Code,
PyCharm, ...).

It will be easy for you to start using them (if you wish to) once you know
the command line usage and the concepts of Git.

version control

a (very) brief introduction

Why use version control ?

Version control systems (VCS), sometimes also referred to as source control/code managers (SCM),
are software designed to:

= Keep a record of changes made to (mostly) text-based content by recording specific
states of a repository’s content.

= Associate metadata to changes, such as author, date, description, tags (e.g. version).

= Share files among several people and allow collaborative, simultaneous, work on the
repository’s content.

= Backup strategy:

* Repositories under VCS can typically be mirrored to more than one location.

* The database allows to retrieve older versions of a document: if you delete something and
end-up regretting it, the VCS can restore past content for you.

" |n the case of Git, entire ecosystems such as GitHub or GitLab have emerged to offer
additional functionality:
* Distribute software and documentation.

* Run automated pipelines for code testing and deployment (CI/CD).
* Team and project management tool (e.g. issue tracking, continuous integration).

A brief history of Git

" First release in 2005.
= |nitially written by Linus Torvald (who also wrote the first Linux kernel in his spare time...).

= Created to support the development of the Linux kernel code (> 20 million lines of code).

The first commit of Git’s own repository by Linus Torvalds in 2005.

commit e83c¢5163316f89bfbde7d9ab23ca2e25604af29
Author: Linus Torvalds <torvalds@ppc970.osdl.org>

Date: Thu Apr 7 15:13:13 2005 -0700

Initial revision of "git", the information manager
from hell

(some of) The principles that guided the development of Git

Linus wasn't satisfied with existing version control software, so he wrote his own...
He had the following objectives (among others) in mind:

= Distributed development: allow parallel, asynchronous work in independent repositories that do
not require constant synchronization with a central database. Each local Git repo is a full copy of
the project so users can work independently and offline.

= Maintain integrity and trust: since Git is a distributed VCS, maintaining integrity and trust
between the different copies of a repositories is essential. Git uses a blockchain-like approach to
uniquely identify each change to a repository, making it impossible to modify the history of a Git
repo without other people noticing it.

= Enforce documentation: in Git, each change to a repo must have an associated message. This
forces users to document their changes.

= Easy branching/merging: Git makes it easy to create new branches (i.e. lines of development) in a
project. This encourages good working practices.

= Free and open source: users have the freedom to run, copy, distribute, study, change and improve
the software.

e
S
Q
e
©
(S
>
S
(1)
i
o
()
S
K
Q.
Q.
-
(Vs

Part |

Git basics

Working principle, definitions and
making your first commit

Git working principles
and definitions

Basic principle of Git Git can track any types of files (text

or binary), but is optimized to work
with not-too-large text files.

Our objective: record the changes made to the content of a directory on our local machine.
How we proceed:
* Take snapshots (current content of files) at user defined time points — they are not taken automatically.
* Keep track of the order of snapshots (the relation between them) so their history can be recreated.
* Associate metadata with each snapshot: who made it, when, description, ...

Time point 1 Time point 2 Time point 3
W test-project W test-project W test-project
. i tof ... e —
L @ scripty s LD ooyl | —— | doc
G v — — G v — 1 .
is descendent of... —| README.md t = user_gwde.md
— ’_B . .
—| publication.pdf
’_h .
N ,, “ / - |=| script.py [v3]
\\\ '/, \\\ 'l, N
R / N\ J/ - |=| README.md
(snapshot of directory at\ (snapshot of directory at\ /snapshot of directory at\
time point 1 time point 2 time point 3
[5] script.py) script.py [v2] =) script.py [v3]
README.md
\ y \ [Z)README.md) B _
@ user_guide.md

\ [2) publication.pdf /

Definitions: snapshots are called “commits”

* As will be seen in later slides, this statement is not 100%
correct, but is a good-enough approximation for now.

= Commit = snapshot + metadata (author, time, commit message, parent commit ID, etc. ...).

= Create a new commit = record a new state of the directory’s content *.

commit ID

= Each commit has a unique ID number / hash (40 hexadecimal characters): [3c1bb0cd5d67dddc02fae50bf56d3a3a4cbc7204]

Time point 1

W test-project

Time point 2

W test-project

Time point 3

pam=———

W test-project

. ’_h ‘-—
I‘ [% script.py > =| script.py [v2] — - Ml doc
I
B README.md I: =| user_guide.md
— ’_B . .
=| publication.pdf
I
N /. \ / — |=| script.py [v3]
\\ ,l, \\\ /l, D
A / “ J/ - |=| README.md
AN /s . \\ /s
. / This represents “ S R
\\, ‘,// a "commit" \,‘,l ~~~~~~~ ‘ ———————
57d33al _ c3738a7 ba08242 .
@scrlpt.py @script.py [v2] @scrlpt.py [v3]
/ [Z)README.md [Z)README.md

Each commit has a unique ID.
(shown here in abbreviated form)

@ user_guide.md
@ publication.pdf

3]
Definitions: commits are stored in a repository (or “repo”)

= Git repository/repo: version history of files in a directory under Git version control, along
with metadata, and configurations necessary for version tracking and collaboration.

* Technically, a Git repository is only the hidden “.git” directory (see figure below), but often the term is also used to
refer to the entire directory under Git control (“test_project” in the example below).
* Not all files in a directory under Git control have to be tracked: there can be a mix of tracked and untracked files.

= Working Tree: current content (on your computer) of a directory under Git control.

* More exhaustive definition: state of the project files corresponding to the branch/commit that is currently
checked out, augmented with uncommitted changes made to files, as well as untracked files.

“Git repository”

- / Directory under Git version control
Bl test-project * Contains the actual Git repository, and the currently tracked and untracked files.

- sit < Actual Git repository
T = T * Contains the version history of all tracked files, along with metadata and
ma doc configuration necessary to provide the functionalities of Git.

* Can re-create the version of all tracked files, at any commit.
* Each directory under Git control has its own repository.

user_guide.md

publication.pdf

script.py

README.md <+— Tracked file: file under Git version control.
|

F————————=—=—=—=—-==—=--

!
Personal_notes.md €= Untracked file: file present in the git repo directory, but not under version control.

Working tree

D
Definitions: branches

= Repository history: history of commits (chronology of commits).

= Branch: refers to a “line of development” within the commit history.
* Technically a branch is simply a reference to a commit.

<= Representation convention:
different colors indicate
different Git “branches”.

<4== Representation
convention: each circle
represents a commit to
the Git repo.

<4 Some commits can
have 2 parents.

<= First commit in the history of the repository.

git

git

D
Examples of Git use cases

Exercises 2 and 3 Exercise 4
Exercise 1 Single repo, branched workflow Collaboration with
Single repo, single branch (multiple development lines) distributed and central repos.

es-= -5

GitHub GitLab GitHub GitLab GitHub GitLab
Use case Use case Use case
* Keep a documented log of your work. * Service in production with continued * Collaborate with others (distributed
* Go back and compare to earlier versions. development in parallel (e.g. adding development).
* Backup (if a paired with a remote). new feature). * + all benefits of the previous use case.

* Distribute your code (if paired with remote) < + all benefits of the previous use case.

The local repo must be associated to a remote repository to provide backup Each user has a full copy of the data*.
functionality (and new commits must be regularly pushed). Highly recommended. * Provided they regularly sync their local repo.

Local vs. Remote repository

= When creating a new Git repository on your computer, everything is only local.

= To get a copy of your repository online, you must take the active steps of:

* Creating a new repository on a hosting service (e.g. GitHub, GitLab, Bitbucket, ...).
* Associate the online repository with your local repo.

* Push your local content to the remote.

= By design, Git does not automatically synchronize a local and remote repo. Download/upload of
data must be triggered by the user.

e
S
Q
e
©
(S
>
S
(1)
i
o
()
S
K
Q.
Q.
-
(Vs

Using Git with large files: the problem

Git can store any type of file, “plain text” or binary.

It would be nice if we could store data (large files) together with code ...
Tracking large files together with code is an attractive proposition, e.g. in scientific applications:

= Data analysis/processing pipeline.
»= Machine learning applications (training data and code in the same place).

... but Git does not work well with large files

= Git was designed for tracking code —i.e. relatively small text files.

= Adding large files to a Git repo is technically possible, however:

 Since Git is a distributed VCS (version control system), each local copy of a repository will contain a full copy of all versions
of all tracked files. Therefore, adding large files will quickly inflate the size of everyone’s repository, resulting in higher disk
space usage (on local hosts).

 Git’s internal data compression (i.e. packfiles) is not optimized to work with binary data (e.g. image or video files). Each
change to a binary file will (more or less) add the full size of the file to the repo, taking disk space and slowing down
operations such as repo cloning or update fetching.

* Commercial hosting platforms impose limits on the size of files that can be pushed to hosted Git repos (GitHub: 100 MB,
GitLab: no file limit but 10 GB repo limit).

e
S
Q
e
©
(S
>
S
(1)
i
o
()
S
K
Q.
Q.
-
(Vs

e
S
Q
e
©
(S
>
S
(1)
i
o
()
S
K
Q.
Q.
-
(Vs

Using Git with large files: possible solutions

Git LFS (Large File Storage)

Git LFS (Large File Storage) is an extension for Git,
specifically designed to handle large files.

= Open source project: https://git-Ifs.github.com

DVC (Data Version Control)

DVC (Data Version Control) is a software that integrates
with Git (a sort of layer used on top of Git) to allow
versioning and storage of large files.

= Open source project: https://dvc.org

Basic principle: large files are not stored in the Git
database (the . git directory), instead:

= Only a reference/pointer to large files is stored
in the Git database.

® The actual files are stored in a separate
repository or “object store”.

Not all hosting services support Git LFS, and when they do,
storage space is limited (additional space may be purchased).

https://git-lfs.github.com/
https://dvc.org/

Git configuration

git config

Configuring Git

= The minimum configuration is setting a user name and email. These will
be used as default author for each commit.

= Setting user name and email:

git config --global user.name <user name> 4—@ The --global option/flag tells Git to store the setting
at the “global” (user wide) scope. Global settings apply

git config --global user.email <email> to all Git repos on your machine.

If you don’t add the --global option, then the setting
will only apply to the current Git repo.
Global settings are stored in the following file:

= Linux: /home/$USER/ .gitconfig
® Windows: C: /Users/<user name>/.gitconfig
= MacOS: /Users/<user name>/.gitconfig

= Config values can be retrieved by using the -—-get option.

= Examples: # Set user name and email at the global (user-wide) scope:
[alice@local ~]$ git config --global user.name "Alice"
[alice@local ~]$ git config --global user.email alice@redqueen.org

Retrieve setting values:

[alice@local ~]$ git config --get user.name
Alice

[alice@loginl ~]S$ git config --get user.email
alicel@redgqueen.org

Configuring Git: changing the default text editor

On most systems, the default editor that Git uses is “vim”.
However, this can be configured with the following git config command:

git config --global core.editor <editor cmd>

= Display the current default editor used by Git:

git config --global --get core.editor

= Example: changing the default editor to “nano” (another command line editor).

Change the default editor to “nano”.
$ git config --global core.editor nano

Display the current default editor.
$ git config --global --get core.editor
nano

e
S
Q
e
©
(S
>
S
(1)
i
o
()
S
K
Q.
Q.
-
(Vs

e
S
Q
e
©
(S
>
S
(1)
i
o
()
S
K
Q.
Q.
-
(Vs

Configuring Git: scopes and their config file locations

Depending on their scope, Git configurations apply to all Git repositories of a user, or only to a specific repository.
The main 3 scopes are:

= Global (user wide): settings apply to all Git repositories controlled by the user.

= To save a setting as part of the global scope, add the --global flagtothegit config command:
git config -global ... \

= Stored in /home/<user name>/.gitconfig (Linux), C:\Users\<user name>\.gitconfig
(Windows) or /Users/<user name>/.gitconfig (Mac OS).

= Local (repo specific): settings apply only to a specific Git repo.
= Stored inthe .git/config file of the repository.
= System (system wide): settings apply to all users and all repos on a given machine. This can only be modified

by a system administrator.

To show the list of all Git configurations, along with their scope and the location of the file they are stored-in:

git config --list --show-origin --show-scope

e
S
Q
e
©
(S
>
S
(1)
i
o
()
S
K
Q.
Q.
-
(Vs

Cross-platform collaboration: the line-end problem

Linux/Mac and Windows do not use the same “line-end” characters: this can cause problems when collaborating

with people who use a different operating system.

* Linux/Mac: uses LF (linefeed; \n) as line-ending character.
* Windows: uses CRLF (carriage-return + linefeed; \ xr\n) as line-ending character.

=» Problem: text files created on Windows will not work well on Linux/Mac and vice versa.

Ny

Windows computer &

Working directory
[project.git]

xxx CRLF
xxx CRLF
xxx CRLF

XXX LF
xxx LF
LF

Wrong line-ending

for Windows! x

git add

=

git
Gitrepo [.git]

xxx CRLF

xxx CRLF
xxx CRLF

_

online hosting service

v () 9

GitLab GitHub Bitbucket

& Linux/Mac computer

git
Gitrepo[.git]

Working directory
[project.git]

J

> xxx CRLF > xxx CRLF
xxx CRLF xxx CRLF
00 CRLF Wrong line-ending CRLF
for Linux/Mac!
- e add Xxx LF

XXX LF
XXX LF

Cross-platform collaboration: solution

The solution is to ask Git to automatically convert between LF and CRLF during

add/checkout operations using the configuration option:

... Windows computer ?
git config core.autocrlf ‘ — »

git
\ git add A

xxx CRLF Xxx LF
- —
" On Windows computers: core.autocrlf true should be setso thatLF are xxx CRLF xxx LF

automatically changed to CRLF each time a file is checked-in or checked-out. O CRLT s

git config core.autocrlf true <+— Change setting for current repo. xxx CRLF) xxx LF
git config --global core.autocrlf true <«— --global =change setting for all repos. XXX git: XXX ti
XXX XXX

core.autocrlf true ‘

= On Linux/Mac computers: core.autocrlf input should be set so that LF line- -
: o " Linux/Mac computer
endings (LF) are left untouched, and that CRLF are converted to LF when a file is 2 ?
added (this will only be useful in the rare cases when a file with CRLF ending is somehow : _& 0
git add

xxx LF >
XXX LF

git

present on the machine, e.g. because it was sent via email by a Windows user).

git config core.autocrlf input
git config --global core.autocrlf input

xxx LF

xxx CRLF
xxx CRLF
xxx CRLF

* core.autocrlf false to disable LF/CRLF auto-modifications (this is the default): RN

xxx LF

git config core.autocrlf false
git config --global core.autocrlf false

XXX LF
xxx LF

core.autocrlf input

e
S
Q
e
©
(S
>
S
(1)
i
o
()
S
K
Q.
Q.
-
(Vs

core.autocrlf warnings

When core.autocrlf issetto True (thisisin principle only for windows users), a warning
is displayed when files are added/checked-out to/from the git repo:

$ git add test file.py
warning: LF will be replaced by CRLF in test file.py
The file will have its original line endings in your working directory

Somehow the message is the same during adding and check-out of files... so when
adding files to the index (git add), the message is actually the wrong way round:
it should be something like “CRLF will be changed to LF in checked-in file”.

e
S
Q
e
©
(S
>
S
(1)
i
o
()
S
o
Q.
Q.
-
(Vs

Creating a new repo

git init

git clone

There are 2 main ways of obtaining a new Git repo...

Turn a local directory into a Git repo Clone a repo from an online source
(start from scratch) (start from an existing repo)

Enter the directory to version-control, then run: git clone https://github.com/. ..

git init
0,7 c ; -L
% GitHub GitLab
LTTN
git
* A new, empty, Git repository is created in the current directory. * The entire content of the online Git repository is “cloned” (i.e.
* Files present in the directory can now be version-controlled. downloaded) to the local machine.
However, version-control of files is not automatic — more on * The online repo is automatically linked (i.e. setup as a “remote”)
that later. for the local repo: we can push commits with no additional setup.
* At this point there is no online remote associated with the new * Starting a new project on GitHub/GitLab and cloning it can also be
repo. Everything is only local. a way to create a new empty local repository and immediately link

it to a remote.

Cloning and working with remotes will be presented in more
details later in these slides.

Creating a new Git repository (from scratch)

git init @ Initializes a Git repository in the current working directory,

turning it into a Git version controlled directory. Uiz i

(“database”) is
stored in the hidden

—, test_project .git directory.

Example: - gl sit — |
$ cd /home/alice/test project # Enter directory to version control. | =2 (oc
$ git init —
Initialized empty Git repository in /home/alice/test project/.git/ L@ user guide.pdf
Listing the content of our directory, we now see a new .git directory. B @ el
S 1s -a L
./ ../ .git/ doc/ src/ README.md @ HEADIIE e

= You must be located at the root of the directory to version control before typing git init

" git init createsahidden .git directory at the root of the directory.

= Everything is stored in this single .git directory: i|>

Never delete the ".git’ directory -

= Complete version history of all tracked files.
= All other data associated to the Git repository (e.g. branches, tags).

= The content of .git can re-create the exact state of all your files at any versioned
time - e.g. if you delete a file accidentally or want to go back to an earlier version.

unless you intend to start again your repo from scratch

State of the working directory (here just aftergit init)

3 Useful commands to assess the current status of a Git repo: . . i
How it looks in the file system

T,

= Show status of files in project directory (working tree). G test_project

git status — L -8it <+ The new Git repository
$ git status ~ l doc
On braﬂ§h main <= “main” is the default L@ user_guide.pdf
No commits yet branch name. n
Untracked files: | — @ script.py
doc/
README . md - [=) README.md

script.py red = untracked files

Commit history: show log of commits, i.e. the history of the repo.

Since we just created a new repo there are no
commits yet, which is why we get this error.

S git log <
fatal: your current branch
'main' does not have any

git log

commits yet

List files that are currently tracked by Git (i.e. part of the Git index).

By default, files are untracked. This is why
there is currently no tracked file.

S git 1ls-files <=

git ls-files
<empty output>

Summary: when creating a new Git repo...

= |t does not matter whether the directory is empty or already contains files/sub-directories.

= Files in a project directory (working tree) are not automatically tracked by Git (files are untracked by default).
® You can have both tracked and untracked files in a project directory.

= Only files located in the project directory — or one of its sub-directories — can be tracked.

= Project directories are self-contained — you can rename them or move them around in your file system.

= You can (should) have multiple Git repositories on your system — typically one per project or per code/script you
develop * - don’t use a single Git repo to track the entire content of your computer!

= Nesting Git repositories (i.e. having one repo inside another) is technically possible, but should be avoided unless
there is a clear use-case for it.

Never delete the . git directory, you would lose the entire versioning history
&of your repository (along with all files not currently present in the working tree).

* An exception is the case of multiple projects that are tightly linked to another: in such cases it can be useful to have them all in a single repo — this is known as a monorepo.

Behind the scenes: the content of the .git directory

.git
branches
COMMI T_EDITMSG
config Config settings specific to the repo.
description
HEAD
hooks
index < Git index (binary file)
info
L— exclude
logs
— HEAD
L— refs
L— heads

T TTTTTITITTTR

i
5
5

__ Directory where the copies of all

— objects versions of all files are stored. |
| i

|

|

|

|

|

— 90 i

| L— 357££7068036cb72147cd0bac76115eaea0410

L 95
| L — e40976£05bf0ece72031c3b2c66ac3ba2ba5d5 <=—= |ndividual files are stored |

under their SHA 256 hash.

— info

]
()
th
0]

| — develop
L— main < Branch pointers

|
L— tags

e
S
Q
e
©
(S
>
|
(1)
i
o
()
S
K
Q.
Q.
-
(Vs

“Bare” Git repositories

A bare repo is a repo that has no working tree: it does not contain any instance of the files that are under
Git version control, but only the content of the ".git" directory/database.

This type of repo is found on remote servers used to share and sync changes across multiple Git
repositories. They can be initialized with the command:

git init --bare

e
S
Q
e
©
(S
>
S
(1)
i
o
()
S
K
Q.
Q.
-
(Vs

Making a commit

git add

git commit

finiti h o . « . ” Git index (staging area): “virtual space” where files are gathered before committing
Definition: the Git index (Or staging area) them to the repository. Acts as a buffer between the working tree and the repository,
allowing to selectively chose changes to include in the next commit.

In Git; Creating a commit is a Z'Step process: Technical note: in practice, the Git index is a file in Git’s database).
Step 1 — Staging files Step 2 - Commit
Selection of files to commit. To make a new or modified file Create a commit with the current content of the Git index. A
part of the next commit, it must be added to the Git index new commit (containing the current content of the Git index)
(also known as the staging area). is added to the repository.
git add <file or directory> git commit -m "commit message..."

o e Git index (staging area) ?
— & where the content of the next commit is prepared. 0 Git repository
T — git
B test-project -—— T T ==
- >

e ~

L | = i — S
3 README.md git add README.md) g README.md .

— ascript.py git add script.py / %script.py git commit [README.md

— 3 user-guide.pdf | git add user-guide.pdf J % user-guide.pdf /, (=) script.py
N s @ user-guide.pdf
— a notes.md S o o

\ ~—__—’

In this example, notes .md is not part of
the commit because it was not staged.

We can now update our definition of a commit: 9

Commit = snapshot of the Git index at a given time.
Git index = content of your next commit.

Why do we need this 2-step process ?

= Why do we need the Git index ?
= Why not simply commit the entire content of our directory ?

|::> The objective of this 2-step procedure is to let users craft “well thought” commits.

= Commits are meant to be meaningful units of change in your code base (or the content you track).
= Not all current changes in the working tree need to be part of the next commit.

ONE DOES NOT SIMPLY
\

r~

DUMP,THE ENTIRE CONTENT OF THE REPO INTO
A SINGLE MEANINGLESS GOMMIT BEFORE GOING HOME

Staging and making a commit: step-by-step example

G working tree Ol it [local Git repository]

Working tree (actual files on disk) Git index (staging area) Committed content

Step 1: stage files to be part of the next commit. ‘

w test_project git add README.md
Y
~ L it git add script.py p.
— i doc . -
@ README.md Technical note: when a file is staged
|_ % user_guide.pdf (added to the Git index), a copy of the
— - @ script.py file is added to the .git/ local repo.
— L tests '
L % output.csv git add README.md script.py p.
? 1
— @ README.md Shortcut: multiple files can be added
. inasingle git add command.
— @ script.py :
File status (before staging) File status (after staging)
$ git status $ git status
On branch main On branch main
No commits yet No commits yet c
- : g:.t status now Commit history
Untracked files: Changes to be committed: indicates that 2 files) i
doc/ new file: README.md <— have been newly added $ git log So far we only staged files,
tests/ Initially, all files new file: script.py to the Git index. fatal: your current branch but no commit was made.
README.md are untracked. , 'main' does not have any This is why the output of
Untracked files: commits yet git log is empty.

script.py "

Staging and making a commit: step-by-step example

G working tree Ol it [local Git repository]
Working tree (actual files on disk) Git index (staging area) Committed content
Step 1: stage files to be part of the next commit. ‘ Step 2: add a new commit to
| the repository.
w test_project git add README.md). :
Y git commit -m "Initial commit for ..."
~ L it git add script.py p. '
1

[2) README.md

@ script.py

L a user_guide.pdf

- Ol tests
L 2 output.csv

- (=) README.md

— @ script.py

Files that are part of the

File status L .
. Git index (tracked files)
(after commit) with no modifications Commit history (after commit) 5 README.md

$ git status (README .md, script.py) $ git log @scrlpt.py
On branch main arenotlisted. commit 8190787daa6fcad3f5£25b819716d50c31bf5c26
Untracked files: Author: Alice <alice@redqueen.org>

Date: Sun Feb 9 15:07:56 2020 +0100

doc/
tests/ Initial commit for test project

. Staging and making a commit: step-by-step example Important: once a version of a file was added to the Git index, it remains
there and will be part of the next commit (unless we explicitly remove it).
As long as a file is not modified, there is no need to stage it again.

G working tree Ol it [local Git repository] 7

Working tree (actual files on disk) Git index (staging area) Committed content

Let’s add a new file to our repo: user _guide.pdf ‘
1

L test_project git add doc/ > git commit -m "Add user guide"
-l st |
= — doc r --------------------
T | [Z) README.md i
a user_guide.pdf : 3 _ I
— ot HE script.py i
Bl tests . a doc/user_guide.pdf ! Technical note: files that do not
L a output.csv : 1 change across commits are stored
— : : only once: there is no wasteful
_ @ README.md : : data duplication.
1 1
. 1 1
- @ script.py : i [Z] README.md

| @ doc/user_guide.pdf

File status (after staging) Commit history (after commit)
$ git status $ git log
On branch main commit 04728026143ae57a71dcb7c1a503022041fb7d4d @READI\/IE.md
Author: Alice <alice@redgqueen.org> .
Changes to be committed: Date: Fri Oct 11 09:53:05 2024 +0200 @scrlpt.py
new file: doc/user_guide.pdf Add user guide
, . commit 8190787daa6fcad3f5£25b819716d50c31bf5c26
Untracked files: Author: Alice <alice@redgqueen.org>
tests/ Date: Fri Oct 11 08:43:15 2024 +0200

Initial commit for test project

Staging and making a commit: step-by-step example

Gl working tree

Ol it [local Git repository]

Working tree (actual files on disk)

Git index (staging area) Committed content

To commit changes in script.py, we need to stage it again. ‘

L a user_guide.pdf

- (O tests
L 2 output.csv

An update was made
to script.py

‘ test_project git add S(;‘.ript.py p.
T
-) sit git add t?sts/)

— |=] README.md
= md

— @ script.py [version 2]

File status (before staging)

$ git status
On branch main

Changes not staged for commit:
modified: script.py

Untracked files:
tests/

File status (after staging)

S git status
On branch main

Changes to be committed:
modified: script.py
new file: tests/output.csv

=] README.md

% script.py [version 2]
% doc/user_guide.pdf

1

1

1

1

1

1

1

1

1

1

1

I J—
| Q tests/output.csv
1

1

1

1

1

1

1

1
L

git commit -m "Update script" p,
1

[Z) README.md

@script.py [version 2]
@doc/user_guide.pdf

[2) tests/output.csv

[Z) README.md

[% script.py
@ doc/user_guide.pdf

[Z) README.md

File status (after commit) @ script.py

S git status

On branch main
Nothing to commit,
working tree clean

Clean working tree = state of files in the working
tree is the same as in the latest commit. If there are
changes, the working tree is said to be “dirty”.

Reminder:

Summary: staging files (git add)

commit = snapshot of the Git index

_ _ _ _ The Git index (staging area) can therefore be
= By default, files in a directory under Git control are untracked. thought of as a “virtual stage” where the
content of the next commit is prepared.

= Toinclude a file (in its current state) — or a change in file content — to the next commit,
the file must be added to the Git index (staged) with:

git add <file/directory> # Add the specified files/directories to the Git index.

= Multiple files/directories can be added in a single command (by passing multiple file/directory names).

= By default, the entire content of a file is added.
Adding only part of a file is possible with the —-edit or --patch options.

= Staged files remain staged, unless explicitly removed (with git rm or git rm --cached).
= Modified files must be staged (added to the index) again, if the new content is to be added to the next commit.
= Some useful git add options

git add -u / --update # Stages all already tracked files, but ignore untracked files.

git add -A / --all # Stages all files/directories in the working tree (except ignored files), including file deletions.
git add . # Stages entire content of the current directory, except file deletions.

Summary: committing content (git commit)

git commit -m/--message "your commit message"

If no commit message is given, Git will open its

git commit <«—— default editor and ask you to enter it interactively.

Useful shortcuts:

git commit -m "commit message" <files or dirs> # Stage and commit the specified files/directories in a single command.

git commit --all -m "commit message"“ ‘\\\#SmgeandcomnﬂtMImodﬁedtmc&ﬁfmxinasMgmcomnmnd
--all is a shortcut for: This is a shortcut for:
git add -u git add <file or dir>
git commit -m "commit message" git commit -m "commit message"

It will not stage/commit untracked files.

Example

— 6 insertions = 6 lines added in total (across all files)

$ git commit -m "Initial commit for test project"

[main (root-commit) 8190787] Initial commit for test project
3 files changed, 6 insertions (+) < +1
create mode 100644 README.md
create mode 100644 script.py

create mode 100644 doc/quick start.md +1

+ 4 (empty lines also count)

README . md

Quick-start guide for the test project software

script.py
#! /usr/bin/env python3

doc/quick start.md

Test project: testing version control with Git

A small test project to illustrate the use of Git.
Maybe I will add more content to it later.

Making commits: some advice

Git does not impose any restrictions on what and when things can be committed.

One exception being that, by default, commits with zero changes are not allowed, but they are possible by using
the --—allow-empty option: git commit --allow-empty

However, it's best if you:

= Make commits at meaningful points of your code/script development, for instance:

* When a new feature was added (or a few related functions).
* When a bug was fixed.

= Make multiple small commits instead of a large one if you are making changes that affect
different functionalities of your code (this can make it easier to e.g. revert changes).

= Don't commit broken code on your main/master branch, as this is the branch that others might
use to get the latest version of your code.

If you have partial work, you can commit it to a temporary/feature branch, and later merge it
into main/master (more on branch management will follow later).

Committing content: interactive commit message with the “vim” editor

$ git commit

When no commit message is specified,
Git automatically opens a text editor.

Initial commit for test project By default, this editor is “vim”.
Please enter the commit message for your changes. Lines starting

with '"#' will be ignored, and an empty message aborts the commit.

“ o n .

4 On branch main = In the “vim” editor, press on the
Changes to be committed: key “i” to enter edit mode

new file: README.md

f g Liles Seciph.py = |In edit mode, you can now type
X new file: doc/quick start.md your commit message.

e
S
Q
e
©
(S
>
S
(1)
i
o
()
S
K
Q.
Q.
-
(Vs

Committing content: interactive commit message with the “vim” editor

Initial commit for test_project [] Commrt message can be entered

.. : L. : . over multiple lines.
This is the very first commit in this Git repo.

Way to go! = By convention, try to keep lines
Please enter the commit message for your changes. Lines starting reasonably short (<= 80 Chars)
with '"#' will be ignored, and an empty message aborts the commit.

#

On branch main

Changes to be committed:

modified: README.md

new file: script.py

new file: doc/quick start.md

#

® Press “Esc” to exit “edit” mode.

2

= Type “:wq” in the vim “command” mode.

3
Q

Press “Enter” to exit vim and save
your commit message.

[main (root-commit) 8190787] Initial commit for test project
3 files changed, 6 insertions(+)

create mode 100644 README.md

create mode 100644 script.py = You are now back in the shell and
create mode 100644 doc/quick start.md your commit is done.

e
S
Q
e
©
(S
>
S
(1)
i
o
()
S
K
Q.
Q.
-
(Vs

Demo

= |nitializing a new Git repo.
= Adding content to the Git repo.

= Making a commit with interactive commit message.

exercise 1 —part A

Your first commit

@ This exercise has helper slides

-
)
©
£
£
[
(2

Exercise 1 help: bash (shell) commands you may need during this course

cd <directory>

cd

1s -1
1s -1la
pwd

cp <file> <dest dir>
mv <file> <new name>
mv <file> <directory>
cat <file>
less <file>
vim <file>

nano <file>

Change into directory (enter directory).

Change to parent directory.

List content of current directory.

List content of current directory including hidden files.
Print current working directory.

Copy a file to directory “dest dir”.

Rename a file to <new name>.

Move a file to a different directory.

Print a file to the terminal.

Show the content of a file (type “g” to exit).

Open a file with the “vim” text editor.

Open a file with the “nano” text editor.

Inspecting file status

git status

git diff

Disp'av f||e status * * Modified files: files with changes in content as comparted
to the latest commit.

- : . : . » ** Staged files that have not been modified since the last
1
g £ EEEsE Dlsplay the status of files in the workmg tree. commit (unmodified files) are not listed, but they are still in

the index and will be part of the next commit.

* Ignored files are also not listed.

S git status

On branch main

Changes to be committed:

(use "git restore --staged <file>..." to unstage) T
Green = files with (changes in) —> new file: LICENSE.txt ¢ newfile=fileisnotpresentin latestcommit.
content (compared to the latest commit) modified: README . md <= modified = file is modified compared to latest commit. i Staged
that has been staged and will be modified: script.py files **
part of the next commit. deleted: test/test output.csv < deleted =file is present in latest §
- commit and will now be removed | o
=h
Changes not staged for commit: - - 2
(use "git add <file>..." to update what will be committed) :—T'f
(use "git restore <file>..." to discard changes in working directory) L
Red = files with (changes in) content —» modified: README.md <= modified = file is modified compared Git index. | Unstaged | *
(compared to the latest commit) that is modified: doc/user_guide .md files
not staged. These changes will not deleted: test/log. txt < deleted = file is deleted on disk, but is still present i
be part of the next commit in the Git index (and the latest commit). i
Untracked files: 7
(use "git add <file>..." to include in what will be committed) | untracked
files

untracked_file.txt J

Note: the (new) content of a file can be partially staged: some changes in the file are staged (added to the index),
e while some remain unstaged. This is the case in the example above for the README . md file (which is why it’s listed in
both the staged and unstaged sections). Only the staged content will become part of the next commit.

File status in Git: summary

Possible statuses for files in Git:

= Tracked — file that is currently under version control. More specifically, it is currently part of the Git index (staging area)
and therefore also generally part of the latest commit *. Tracked files can be further categorized as:

= Unmodified — the file is part of the latest commit * (and the Git index), and no change was made to the
file since then. In other words, the content of the file in the working directory (working tree) is the same
as in the latest commit. Unmodified files are not listed by the git status command.

= Modified —the content of the file in the working directory (working tree) differs from the latest commit *.
Modified files can be staged, unstaged, or partially staged.

= Staged: the difference in content has been added the Git index (staging area), and will therefore be
committed with the next commit.

= Unstaged: the difference in content has not been staged (not part of the Git index), and will
therefore not be part of the next commit.

= Partially staged: some differences (but not all) have been staged (added to the Git index). Only the
staged differences will be part of the next commit.

= Untracked - file present in the project directory (working tree), but not currently under version control by Git. More
specifically, the file is not currently present in the Git index — but could be part of an earlier commit.

= Ignored - untracked file that is part of the repository’s “ignore list” (.gitignore or .git/info/exclude file).
Ignored files are not listed by the git status command.

e
S
Q
e
©
(S
>
S
(1)
i
o
()
S
K
Q.
Q.
-
(Vs

* more precisely: the commit to which the HEAD pointer is currently pointing — this concept is explained later in the slides.

How do | know what changed and which changes are staged ?

Example:

git diff | Show differences between two states of a Git repo. $ git diff

diff --git a/README.md b/README.md

index f5e333d..844d178 100644
git diff <file> # show diff only for a specific file. ilj_e;{/RE;DME_md

git diff --cached +++ b/README .md
@@ -1,2 +1,3 Q@

git diff <commit 1 (older)> <commit 2 (newer)> Project description:
git diff --name-only # show only file names, not the changes. -This is a test
+This is a demo project
+and it's pretty useless
git diff
_ git diff —-—-cached -
working tree < > git index < > A Committed
actual files on disk "staging area" content

git diff <C>

git diff <A> <D>

<

©-0-0-0

Inspecting commits and history

git show

git log

Display the “content” of a commit

git show Display the changes in file content introduced by a commit.

git show <commit reference>

git show \

Example:

$ git show 89d201f
commit 89d201fd0lead6ad99aldobcoda5aald78c92lect
Author: Alice <alice@redqueen.org>

Date: Wed Feb 19 14:00:02 2020 +0100

Add stripe color option to class Cheshire cat

diff --git a/script.sh b/script.sh
index d7bfdc8..£a99250 100755

-—-- a/script.sh

+++ b/script.sh

@@ -7,13 +7,28 @d

def Cheshire cat():
= def init_ (self, name, owner=“red queen”):

s self.stripe color = stripe color

with no argument, the latest commit on the current branch is shown (i.e. HEAD)

Examples of commit references:

= A commit ID (hash): 89d201f
= A branch name: develop

= Atagname: 1.0.7

= The HEAD pointer.

= A relative reference: HEAD~3

If no commit reference is given, HEAD
is used as default.

é The detail of changes can only be shown
for plain text files.

git show --name-only <ref>

Only display file names (without the changes)

- def init (self, name, owner=“"red queen”, stripe color=“orange”):

S git show --name-only 89d201f

commit 89d201fd0lead6ad499%aldcbcbdab5aal78c92lect
Author: Alice <alice@redqueen.org>

Date: Wed Feb 19 14:00:02 2020 +0100

Add stripe color option to Cheshire cat

script.sh

Display commit history

Print the commit history of the repository, newest commit to oldest (i.e. newest commit at the top)

git log
git log --oneline

git log --all --decorate --oneline --graph

Example: default view (detailed commits of current branch).

git log has many options
9 to format its output.
See git log --help

$ git log

Author: Alice alicelredqueen.org
Date: Wed Feb 19 14:13:30 2020 +0100

Add stripe color option to class Cheshire cat

commit £3d8e2280010525ba29b0df63de8b7c2cd7daeaf
Author: Alice alice@redqueen.org
Date: Wed Feb 19 14:11:56 2020 +0100

commit cfd30ce6e362bb4536£9d94e£f0320£f9bf8f81e69
Author: Mad Hatter mad.hatter@wonder.net
Date: Wed Feb 19 13:31:32 2020 +0100

Add .gitignore file to ignore script output

commit f6ceaac2cc74bd8cl52ellb9cl2ada725e06c8b9 (HEAD -> main, origin/main)

Fix off with their heads() so 1t now passes tests

Example: compact view of current branch

$ git log --oneline

féceaac (HEAD -> main, origin/main) peak sorter: add authors to script
£3d8e22 peak sorter: display name of highest peak when script completes
cfd30ce Add gitignore file to ignore script output

£8231ce Add README file to project

821bcf5 peak sorter: add +x permission

40d5ad5 Add input table of peaks above 4000m in the Alps

a3e9eab peak sorter: add first version of peak sorter script

Example: compact view of entire repo (all branches)

$ git log --all --decorate --oneline --graph
* fcOb016 (origin/feature-dahu, feature-dahu) peak sorter: display highest peak at end of script
d29958d peak sorter: add authors as comment to script
6c0d087 peak sorter: improve code commenting
89d201f peak sorter: add Dahu observation counts to output table
9da30be README: add more explanation about the added Dahu counts
58e6152 Add Dahu count table
* f6ceaac (HEAD -> main, origin/main) peak sorter: add authors to script
* f3d8e22 peak sorter: display name of highest peak when script completes
/
* cfd30ce Add gitignore file to ignore script output
* £8231ce Add README file to project
| * 1c695d9 (origin/dev-jimmy, dev-jimmy) peak sorter: add check that input table has the ALTITUDE and PEAK columns
| * ££85686 Ran script and added output
|/
* 821bcf5 peak sorter: add +x permission
* 40d5ad5 Add input table of peaks above 4000m in the Alps
* a3e9%eab peak sorter: add first version of peak sorter script

—_ — — % % * * *

e
S
Q
e
©
(S
>
S
(1)
i
o
()
S
K
Q.
Q.
-
(Vs

Adding custom shortcuts to Git

Some git commands can be long and painful to type, especially when you need them often!
To shorten a command, you can create custom aliases:

git config --global alias.<name of your alias> "command to associate to alias"

Example:

git config --global alias.adog "log --all --decorate --oneline --graph"

With the alias set, you can now simply type: l, I ' : G
git adog

-
|
S

JECORATEL:(

Editing the Git index

(staging area)

Summary: removing content from the Git index

— e
| |

Remove newly staged content from the index (one file at a time).

git restore --staged <file> # Remove newly staged content of the specified file.

7

f Without the —-staged option => resets file in work tree to the its version in the Git index.

XXXXXXX
XXXXXXX

XXXXXXX
XXXXXXX

The same can also be achieved using the git reset command. This is a specific use of
the reset command, which has a wider scope.

git reset HEAD <file>
git reset HEAD

XXXXXXX

Remove newly staged content of a specific file.
% # Remove all newly staged content (all files).

Useful to unstage all changes in a single command.

Delete entire files from the index and the working tree.

git rm --cached <file> # Delete file from index only.
git rm <file> # Delete file from both index and working tree.

I\

&Without the —-cached option => deletes file in working tree (i.e. on disk) ! @ @

Rename and/or move files both in the working tree and the Git index. @ old-name @ old-name

git mv <file> <new location/new name> l l

@ new-name @ new-name

Note: the git restore command is available from Git >=2.23

Removing content from the Git index: example

Gl working directory

Scenario: an update was made to user-guide.pdf and script.py. We want to commit the new version of

user-guide.pdf (version 2), but not the changes to script.py and not notes.md .

ol -git, local Git repository

L

Working tree (actual files on disk)

w test-project

git add --all p.

a user-guide.pdf [version 2]

- G tests

$ git status

File status after git add --all

On branch main

% output.csv

- (=) README.md A

2
— @ script.py [version}’]

git restore script.py {

Git index (staging area) Committed content

The version of script.py

in the index is restored to
% README.md the version from the latest
— ' commit*.
% script.py [version,Z] git restore --staged script.py |
% doc/user-guide.pdf [version 2]

% tests/output.csv

%notes.md git restore --staged notes.md \

Since notes.md is not present in the

latest commit*, the whole file gets @ README.md
removed from the index. @ script.py [version 2]

n @ notes.md Without

working

@ doc/user-guide.pdf

--staged, this resets the file in the
@ tests/output.csv

tree to its version from the index.

File status after git

S git status

Changes to be L . e .
modified: script.
modified: doc/user-guide.pdf T Pt-PY
modified: script.py Untracked files:
new file: notes.md notes.md

Changes to be committed:
modified: doc/user-guide.pdf

h £ it '
committed: Changes not staged for commit @README md

restore @ README.md

@ script.py
| @ doc/user-guide.pdf

@ script.py

* more precisely: the commit to which the HEAD is currently pointing,
usually the latest commit on the current branch.

Removing content from the Git index: example Scenario: at this point we realize that we would also like to stop tracking tests/output.csv in our repo.

G working directory ol -git, local Git repository

Working tree (actual files on disk) Git index (staging area) Committed content

w test-project

— =] README.md
— B sit —
== % script.py [version 2]
—'..l ocC
L @ user-guide.pdf [version 2] a doc/user-guide [version 2].pdf
— 2 tests %tESts/OUtpUt'CSV Removes output.csv (entirely)
L f from the Git index.
%Output.csv git rm --cached test/output.csv

B @ script.py [ver5|on 3] Removes the file from both the @ doc/user-guide pdf
| @ notes.md index and the working tree. @ tests/output CS\.I

File status after git rm --cached @ README.md
. . .m
§ git status File status after git rm test/output.csv

$ git status @script.py

- (=) README.md _ 2README.md
git rm test/output.csv | @script.py [version 2]

Changes to be committed:
modified: doc/user-guide.pdf Changes to be committed:

Changes not staged for commit: HEEEGEE CloE) TG PE

modified: script.py Changes not staged for commit: @README.md

modified: script.py @ script py

@ doc/user-guide.pdf

Untracked files:
notes.md Untracked files:
tests/output.csv notes.md

Removing content from the Git index: example

G working directory ol -git, local Git repository
Working tree (actual files on disk) Git index (staging area) Committed content
Gl test-project i'“j-R-EXD-I\;IE--;-- git commit -m "Update user guide for v2"
P = .m
— B -git i i i
pr— ' |=| script.py [version 2 I
| @ doc 1 (=] serip py [] |
1 . .
=|d -guid 2].pdf I README.md
L @ user-guide.pdf [version 2] : 3 oc/user-guide [version 2].p : 2 . m -
P : / @ script.py [version 2]
— L tests P i [doc/user-guide.pdf [version 2]

[2) README.md

@ script.py [version 2]
@ doc/user-guide.pdf
[2) tests/output.csv

- (=) README.md

— @ script.py [version 3]
— @ notes.md

@ README.md °utput.csv
remains in the

(S script.py repository’s

@ doc/user-guide history and can
be recovered if

We can see that output.csv is no longer tracked, but it remains part of the history of our repo.

O-0-0-06

S git 1ls-files # This command lists all files part of the repo’s history needed
README . md S git log --pretty=format: --name-only --diff-filter=A | sort -u @ README.md)
script.py README . md ’
doc/user-guide.pdf script.py What if this was a file that contains sensitive data @script.py
doc/user-guide.pdf we want to completely purge from the repo (e.g.
tests/output.csv <= 3 leaked password) ?

. Retrieving a file from the Git repo: example | would now like to retrieve the file output. csv from the Git repository.

G working directory ol -git, local Git repository

Working tree (actual files on disk) Git index (staging area) Committed content

w test-project

— =] README.md
— B -git —
2 doc % script.py [version 2]
L a user-guide.pdf [version 2] % doc/user-guide [version 2].pdf [2)README.md
- % tests/output.csv ‘/ =) script.py [version 2]
— Ml tests [2) doc/user-guide.pdf [version 2]
L j output.csv ﬂ |

B @ README.md git restore --source=c3 ——staged @ README.md
' tests/output. csv , _
- @ script.py [version 3 @scrlpt.py [version 2]
@ q @ doc/user-guide.pdf
- notes.m [2) tests/output.csv
git restore --source=c3 tests/output csv
When neither --worktree nor --staged is @ README.md

passed as argument, --worktree is used as default. @ script.py

@ doc/user-guide.pdf

To restore a file in both the working tree and the index at the same time, you can use: @ @ README.md

(both commands produce the same result)

script.
git restore --source=c3 --worktree --staged tests/output.csv @ Pt-pY

git checkout c3 tests/output.csv

OMG ! How will | remember all these fantastic commands ??

The git status command provides helpful hints on how to stage/unstage files.

$ git status

On branch main
Changes to be committed:
(use "git restore --staged <file>..." to unstage)
modified: user-guide.pdf

Changes not staged for commit:
(use "git add <file>..." to update what will be committed)

(use ""git restore <file>..." to discard changes in working directory)

modified: script.py

Warning: without the --staged option, git
restore will reset (overwrite) the file in the
working tree with the version of the file from
the Git index.

Untracked files:
(use "git add <file>..." to include in what will be committed)
notes.md

tests/output.csv
Only run it if you intend to delete the current

version of your file.

AN\

ignoring untracked files

.gitignore

.git/info/exclude

Ignoring files

= By default, files that are not added to a Git repo are considered untracked, and are always listed as such
by git status

= To stop Git from listing files as untracked, they can be added to one of the following "ignore" files:

.gitignore .git/info/exclude

= For files to be ignored by every copy of the repository. = For files that should be ignored only by

" _gitignore is meantto be tracked: git add .gitignore your own local copy of the repository.

= Not versioned and not shared.

= Examples:
* outputs of tests = Examples:
* .Rhistory, .RData * Files with some personal notes.

* Files specific to your development

* .pyc (compiled version of python code)
environment (IDE).

Use this method for special

Most of the time, this is ;
cases Where a file should

. the method you will want .)
Example of a .gitignore file to use to ignore files. only be ignored in your

local copy of the repo.
my tests.py i i

.Rdata

;Rg;ztc’ry = Files to ignore are added by manually editing the two above-mentioned files.

test_outputs/ = Files can be ignored based on their full name, or based on glob patterns (see next slide for examples).
e * _txt ignore all files ending in ".txt"
e *_ [oa] ignore all files ending either in ".0" or ".a"
* logs/ appending a slash indicates a directory. The entire directory and all of its content are ignored.

* !dontignorethis. txt addinga!ln front of a file name means it should not be ignored (exception to rule).

Ignoring files: example Q

) files ignored only in my . L.
i test_project local copy of the repo. = There can b¢.a multiple .gitignore
B ﬁ it files per project, to create custom per-
-5 my_teéts -PY directory ignore rules.
L ol info *.my ide
L = |gnore rules in sub-directories are
@ exclude inherited from the .gitignore of
_ i large_data their parent directory(ies).

The .gitignore files themselves
should not be ignored: add them to

|
J v
=
(@)
[

sub-directory.

“\ * log files.

This file is a config for an IDE software.
It is of no use to others. This is why it is
ignoredin .git/info/exclude

=
—|=| module.py
*. a
—)
- |=| module.pyc
- B ,

— — |=| compiled.a
©
- N
g - |=] -gitignore ignored in entire project.
© B .
= - |=| main.log large data/
> i *.log -
= — |=| testrun.log Imain.lo < = Order (sometimes) matters: here the
c — . . * o -+09 rule to not ignore main.log must be
GE’ = [=] test_project.my_ide L placed after the general rule to ignore
2
o
o
S
()

red = ignored file.

Demo

= |gnoring files with .gitignore

exercise 1 —part Band C

Your first commit

A detailed look at commits

Introducing SHA-1

= SHA-1 stands for Secure Hashing Algorithm 1.

= This algorithm turns any binary input into an (almost*) unique 40 character
hexadecimal hash/checksum value (hexadecimal = base 16 number, 0-9 + a-f).

[e83c5163316f89bfbde7d9ab23ca2e25604af290 J

* |mportant: for a given input, SHA-1 always computes the exact same and (almost*) unique hash.

= Example: running "This is a test" through the SHA-1 algorithm, will always produce the hash
shown below:

echo "This is a test" | openssl shal = | 3clbb0Ocd5d67dddc02fae50bf56d3a3adcbc7204

echo "This is a Test" | openssl shal = | 7500c6645cb9cdb20b32002cb82bbe067cc77d6e

* With current hardware, SHA-1 collisions can be reasonably easily created. SHA-1 is no longer considered secure for cryptographic purposes,
but is good enough for usage in Git. It is also fast to compute.

Commits: immutable snapshots of a repository’s state

= A commit represents the state of a repository at a given time => snapshot of Git index + metadata.

= A commitis the only way to enter a change into a Git repository.
This enforces accountability as you cannot have untraceable modifications.

= Each commit has an associated author, committer, commit message and date - this enforces documentation.

= Commits are lightweight:

* They do not contain the tracked files’ data, only a reference to the data (specifically, a Tree* object that represents
the state of the Git index at the time the commit was made).

= Commits contain a reference to their parent commit.

Content of a commit _
Author: Mad Hatter \

Committer: Alice

Commit msg: Fix bug in CheshireCat()

Tree: e5d56fa

commit ID

Parent:| 57dc232 Each commit is uniquely identified by

- a commit ID: a SHA-1 hash/checksum
computed on all its metadata.

* Tree = reference to the state of all files at a given time point = snapshot of repository state.

= Commits contain a reference to the top “Tree object” — a table linking file names and hashes If two commits have the same ID,
of the Git index at the time the commit was made. This is a “snapshot” of the index, and is how Git their content is identical !
can retrieve the state of every file at a given commit.

= Commits point to their direct parent — forming a DAG (directed acyclic graph) where no commit If two commits have the same ID,
can be modified without altering all of its descendants. their entire history is identical !
root commit | fe3306a commit | 45d56fa commit | 815de0a
Author: ... N\ Author: ... \ Author: Mad Hatter \\
Committer: ... Committer: ... Committer: Alice
Commit msg: ... Commit msg: ... Commit msg: Fix bug in function foo()
Date: ... Date: ... Date: 24.02.2020 10:43
Parent: none Parent: | fe3306a Parent:| 45d56fa
Tree:| bd654b1 Tree: Tree: | 57dc232

! 1 !

© .

e Top tree | bd654b1 Top tree |28ad171 Top tree|57dc232 | (root directory) —

u <

© /] README.md | | 15e333d | === |plob

(S ; —

- / LICENSE.txt b028233 | =———t—>

= / blob

- / src/ 38405¢6
_________________________________ 4 — _

v - |

= : Tree object : l)

2 I Table linking file/subdirectory names to hashes of the content of files (blobs). I 38405c6]

o : The “top tree” is the table for the root directory of the repo, it represents a | tree - ¢ main.py ba2906d —> [blob

Q. I snapshot of the Git index at the time a commit was made. ! (src/ directory) '

3’ i ! fun.py dd598fe | =——t> o

Because of how a commit ID is computed,
commits are immutable: once a commit is
made, it cannot be modified without its
commit ID being modified too - which would
then make it a different commit !

Modifying a commit will modify all of its
descendants. It creates a completely new
history of the Git repo.

This ensures the integrity of a Git repository’s
history, something that is important due to the
distributed nature of Git. It can be seen as a
sort of blockchain.

Examples of things that change a commit’s ID:

* Changing the content of a file.
* Changing the time a commit was made.
* Changing the parent commit of a commit.

c3738a7
I

ba08242
I

57dc232
I

ae7c3la
[

b1241f5
|

0flc3bc

—
Small

changein
commit

®-0-0-0-0-G

ae06ff2

023ee33

987fd34

34e7el3

f454df5

0flc3bc

most VCS versioning Git versioning

Git versioning

version3

= Git stores a complete copy of each file’s version*. As counter-intuitive as

it may sound, Git stores
a complete copy of
each file version. Not
just a diff.

What ??

= Optimized for speed rather than disk space
preservation.

-—— version2 diff
+++ version3 diff
+ Yes! It may not be space

= Sub-optimal for tracking large files, as they will + efficient, but it's + fast +-)

quickly inflate the size of the . git repo.
Yes! It may not be space

efficient, but it’s fast :-)

SHA1 — e78bf23...

version2

As counter-intuitive as
it may sound, Git stores
a complete copy of
each file version. Not

As counter-intuitive as
it may sound, Git stores
a complete copy of
each file version. Not

-—— versionl diff
+++ version2 diff

e
S
Q
e
©
(S
>
S
(1)
i
o
()
S
K
Q.
Q.
-
(Vs

efficient, but it’s fast :-)

* At least for a while - at some point Git also stores things as diffs, see "packfiles".

it may sound, git stores
a complete copy of
each file version. Not
just a diff.

just a diff. + What ?? just a diff.
What ??
What ?? SHA1 — 8fb24d3...
versionl versionl
Yes! It may not be space
As counter-intuitive as As counter-intuitive as

it may sound, Git stores
a complete copy of
each file version. Not
just a diff.

SHA1 - 27da79b..,

Git packfiles: compressing old history

= For older commits, Git uses a few tricks to decrease disk space usage:

* Differences between similar files are stored as diffs.
* Multiple files are compressed into a single “packfile” (. pack extension).

* Each packfile has an associated packfile index (. idx extension), that
associates filenames to blobs.

e
S
Q
e
©
(S
>
S
(1)
i
o
()
S
K
Q.
Q.
-
(Vs

The HEAD pointer

siB

HEAD: a pointer to the most recent commit on the currently active branch

Looking at the output of git log, we see a Rl [abel: this shows the position of the HEAD pointer.

Commit ID (SHA1 hash)

Here shown in a shortened
form (7 first chars). HEAD pointer Local branch name Remote branch name

First line of commit message

»Ygit log --al
- HEAD -> main peak sorter: added authors to script

- peak sorter: display name of highest peak when script completes
feature-dahu) peak sorter: display highest peak at end of script
peak sorter: added authors as comment to script
peak sorter: improved code commenting
peak sorter: add Dahu observation counts to output table
README: add more explanation about the added Dahu counts
Add Dahu count table

Add gitignore file to ignore script output
Add README file to project
peak sorter: add check that input table has the ALTITUDE and PEAK columns

Ran script and added output

peak sorter: add +x permission
Add input table of peaks above 4000m in the Alps
peak sorter: add first version of peak sorter script

[+d
HEAD: a pointer to the currently checked-out branch/commit

= HEAD is — most of the time — a pointer to the latest commit on your current branch.
(Sometimes it is also described as a pointer to the current branch — which is itself a pointer to the latest commit on the branch)

= The HEAD position is how Git knows what is the currently “active” branch.
= New commits are added “under” the current HEAD, i.e. a new commit is the “child” of the commit pointed-to by HEAD.
= When a new commit is added, HEAD is automatically moved by Git to point to that new commit.

git commit git switch devel

m m , Next commit
77\
(_)

devel E,'}O devel |:>O HEAD =) devel |:>CI)
|

| e W Next commit . | .
C|> {”:‘) CI) CI><:|maln <= HEAD CI) CI><:|ma|n
O O<:| main <@ HEAD O O O O

N\ | N\ | \\ |
O O O

0 0 0

Another way to look at it, is that HEAD always points to the parent of your next commit.

Relative references to commits

= Using ~ and © symbols, Git allows to refer to a commit by its position relative to another commit, rather
than by its absolute hash.

= Ref can be any reference, such as HEAD, a commit hash, a branch name, or even another Ref.

Ref~X refers to the Xth generation before the commit: ~1 = parent, ~2 = grand-parent, etc.
Ref~ is a shortcut for Ref~1

Ref*X refers to the Xth direct parent of the HEAD commit (but most commits have only a single parent).
Ref” is a shortcut for Ref£*1

¥ O 23p11a7 | <3 HEAD O <3 HEAD
© |
S
|5 O 57d33a1 | HEAD~ / HEAD~1 / HEADA / HEADA1 HEADAL O O HEADA2
= |
a O HEAD~2
S c3738a7 -
HEAD~2 HEAD"MN2~1
- I oJe
=
qé O ba08242 | HEAD~3 / 57d33al1~2 / 23b11a7~-3 HEAD~3 O HEADA2~2
Q 17dc23 Relative t ther Ref
g_ O S Relative to an absolute hash O Slative fo another =e
N

Part Il

Git branches

Managing multiple lines of development

3]
Why branches? Anillustration with a data quality-control pipeline project

“Branching” means to diverge from the main line of development.

= Branches isolate new changes (work in progress) from the

main line of development (stable code). Branch where you work
on a new feature

= Branches isolate changes from different people collaborating P

on a same project (so changes made by Alice do not impact Bob, at
least not immediately).

& new-feature

* On online repos, branches can be protected so that only & bob-test
AN

selected people can add commits to it.
Use case: Bob just started to work on our project, so he is not allowed to
make changes to the “main” branch.

Branch where your colleague Bob
is “you know...just testing stuff...”

dEVE'Op |=> (don’t worry, it’s not on the
. . production branch :-)
Pre-production version of the

data quality-control pipeline.

/
. Version of code
Branch where the next production- | used in broduction
ready version of the data quality- <:| main P
Aeiridrel el 1 (2R =6, Main development line of project.

This is the version of the data
qguality-control pipeline used in
production.

Git is designed to encourage branching: branches are “cheap” (don’t take much disk space) and switching between them is fast.

What are branches?

<& new-feature ¢a HEAD
= A branchisjust a pointer to a commit. L

The HEAD
pointer indicates
the currently
active branch.

= A branchis very lightweight (41 bytes).

= By convention, the main/master branch is the branch representing the stable <@ bug-fix
version of your work. & main

= To know which is the currently active branch, Git uses the HEAD pointer. The

HEAD pointer always points to the currently active branch (except for the special
case of “detached HEAD” mode, discussed later in the second part of this course). <=| old-feature

= New commits are always added at the top of the currently active branch*.

The main branch is no special branch. It is simply the default name given to
@ the branch created when initializing a new repo [git init]. It has become

> 1s -1 .git/refs/heads/*

a convention to use this branch as the stable version of a project. —tw-rw-r-= 1 41 Feb 1 .git/refs/heads/devel
-rw-rw-r—-- 1 41 Feb 1 .git/refs/heads/main
Note: in earlier versions, the “main” branch used to be called the “master” branch. > cat .git/refs/heads/main

8508bc698498861c036636dbadlacz28bebc7f3a’a

) cat .git/refs/heads/devel
4aefde0735e0£95de9969fa660265f71d6a95ebd

lllegal characters in branch names

> 1s -1 .git/HEAD

Spaces and some characters suchas ,~*:?*[]\ are not allowed in branch ;rW-EW‘r_‘;/;Ei; Feb 1 .git/HEAD
. . cat .gi
& names. It is strongly recommended to stick to lowercase letters, numbers ref: refs/heads/main

and the “dash” character [-].

(3 - :
Switching and creating new branches Create a new branch: git branch <branch name>

Switch to another branch: git switch <branch name>

Create a new branch and switchtoit: git switch -c <branch name>

git switch -c dev

git switch dev

1 main
1 HEAD
-------------------------- git branch dev
U’ dev The -c option is to create and switch
to the new branch immediately.

switch vs. checkout

— — On older Git versions the git switch command

X does not exist.
ﬁ main Instead, git checkout is used to switch branches:

git checkout <branch name>

git checkout -b <branch name>

The git switch command was introduced in Git version 2.23 as an replacementto git checkout for switching branches. This was done because the checkout command already
has other uses (e.g. to extract older files from the Git database), and it was deemed confusing that a same command would have multiple usages. It remains nevertheless possible to switch
branches with the git checkout command in recent Git versions.

Switching and creating new branches (continued)

= By default new branches are created at the current position of the HEAD pointer (i.e. the current commit).
= But they can be created at any specified reference.

Reference to a commit, branch or tag.
The default reference is HEAD.

e

Create a new branch: git branch <branch name> <reference> ‘

Create a new branch and switchtoit: git switch -c <branch name> <reference> ‘

Note: HEAD was

Example:
moved, because we
& dev <:I HEAD & dev <:I HEAD & dev switched to the newly
created branch.
& main git branch main git switch -c <& main € bug-fix
backport 57d33al bug-fix main
> >
HEAD

<A backport <A backport

D
List branches and identify the currently active branch

git branch List local branches
git branch -a List local and remote branches
Examples
$ git branch $ git branch -a
devel devel
* main \ % * main Remote branches (to be precise, pointers to remote
new-feature The dgnotes the currently cheerd— new-feature branches) are shown in red and are named
out (active) branch. Generally it is remotes/origin/main 4~ remotes/<remote name>/<branch name>

displayed in green.
remotes/origin/devel

As a handy alternative, “git adog” (git log --all --decorate --oneline --graph) will also show all branches.

The currently active branch can be identified as it has the HEAD pointing to it.

HEAD -> main peak sorter: added authors to script

peak sorter: display name of highest peak when script completes
feature-dahu) peak sorter: display highest peak at end of script

peak sorter: added authors as comment to script
peak sorter: improved code commenting

peak sorter: add Dahu observation counts to output table
README: add more explanation about the added Dahu counts

Add Dahu count table

Add gitignore file to ignore script output

What happens in the working tree when switching branches

= When switching to different branch, the content of your working directory (working tree) is updated as to reflect the state
of the commit the active branch (i.e. the branch you just switched to).

= This means that when switching branches, you can have files appear/disappear or be modified in your working directory.

= A copy of committed files is kept at all times in the .git database so they can be restored when switching branches.

> 1ls -1

Untracked files (here in red) are
<=' dev <:' HEAD 4096 Jan 29 22:45 user guide.md unaffected by branch switches.

108 Jan 29 22:30 personal notes.md
53 Jan 29 22:30 README.md

i - #! /bin/ hon3
< main 77 Jan 29 22:45 [script.py fust/bin/eny pychon
- print ("Hello World")
print ("Git branches are great")
&Qdev > 1s -1 What has changed: git switch main
: 108 Jan 29 22:30 personal notes.md * user_guide.md has disappeared...
_T_B 53 Jan 29 22:30 README .ma * script.py was reverted to the olderversion...
§ <= main <= HEAD Jan 2 9 script.py #!/usr/bin/env python3
© n Size and last modified date has changed! print ("Hello World")
(S
-y
] > 1s -1 What has changed:
= < dev @@ HEAD 4096 Jan 29 22:45 user guide.md » user_guide.md is back. : :
(7] 108 Jan 29 22:30 persgnal notes .md script.py reverted to newer version. | git switch dev
QEJ . 53 Jan 29 22:30 README.md
- <@ main 77 Jan 29 22:45 script.py
Q. n
-
(Vs

What happens in the working tree when switching branches @dev

What if you have uncommitted changes ?

<& main @ HEAD

= |f the changes do not conflict between the branches, they are “carried-over” with the switch.

README.md (on main)

i CHiE come PEETEEE README.md (on dev)
Demo for the "git switch® command. - . . .

Git d t
This is a new uncommitted line glt switch dev s G ShepredEe

> Demo for the “git switch® command.
README.md (on dev) This is a new uncommitted line

Git demo project \
Doe for Hho Selt swltch’ commemd The uncommitted changes are carried-

over to the newly active branch.

= |f the changes conflict between the branches, Git will not allow you to switch.

script.py (on main)

These two lnes = Make a commit on main with your changes before switching to dev.

rmaEiE » Use git stash (see 2" part of this course).

= Revert changes on script.py (Warning: changes are lost for good!):
git restore script.py

G > git switch dev

o= #1/ /bin/ thon3

- 1/ USE/ /ey Pyeaon error: Your local changes to the following
jg print ("Hello World") . . files would be overwritten by checkout:

© print ("This is uncommitted") glt switch dev script.py

E Please commit your changes or stash them
> script.py (on dev) before you switch branches.

E #!/usr/bin/env python3 Aborting

E print ("Hello World") @—
& /[print("Git branches are great") Possible solutions

S

Q.

Q.

=

()

Demo: git switch

= What happens in the working directory when switching branches

git merge
get branches back together

Branch merging

= Merge: incorporate changes from the specified branch into the currently active (checked-out) branch.

git merge <branch to merge into the current branch>

f Before running the command, make sure that the branch into which the changes

should be merged is the currently active branch.

If not, use git switch <branch> to checkout the correct branch.

Merging has not made any

Example: merge changes made on branch feature into the branch main.

changes to my commit history.
All my commits remain the
same (no change in hash).

N

(h) & feature G HEAD c3738a7 | (h) <a feature c3738a7

@ \ !}/Iy activs branch is ba08242 The active branch is “main”. ba08242
fe.atl:]re ,”so I.nsed to We can now merge “feature”

0 switch to “main 5740232 0 / into “main”. 57dc232

=

git switch main

=

git merge feature

At this point, the "feature"

| branch can be deleted.

git branch -d feature

Vs feature

(h) &amain <G HEAD

- -0~

+]
Two types of merges

= Fast-forward merge: when branches have not diverged.
The branch that is being merged (here feature) is rooted on the latest commit of the branch that it is being merged into (here main).

= 3-way merge: when branches have diverged. This introduces an extra “merge commit”.

The common ancestor of the 2 branches is not the last commit of the branch we merge into (here main).

Fast-forward merge 3-way merge (non-fast-forward)
= Guaranteed to be conflict free. = Creates an additional “merge commit” (has 2 parents).
= Conflicts may occur.
wp feature Additional “merge”

& main * / commit is created.

(h) & feature

*main (e) (h)<$afeature S\
(e) (h) ¢ feature

@ @ I X
©
= © @

L) git merge feature

Common/ 6 @

ancestor
: @)

&)
()
(e) &amain *
® =
© git merge feature
()
@)

- OO~

* denotes the currently active (checkout-out) branch.

Conflicts in 3-way merges (non fast-forward)

If a same file is modified at (or around) the same place in the two branches being merged, Git cannot decide
which version to keep. There is a conflict, and you need to manually resolve it.

README.md version of main branch.

Tea pot quality-control pipeline
Check and approve tea pots for use in
unbirthday parties.

Authors: Mad Hatter, Red Queen
Date modified: 2022 Oct 10

Step 1: physical integrity check

* Check exterior for cracks and uneven
painting.

* Check for mice inside of pot.

* Verify the Mad Hatter is on time.

Step 2: tea-brewing integration test
* Brew tea for 7 min.

* Add 2 cubes of sugar.

* Probe tea.

Let’s merge dev-alice into main...

$ git merge dev-alice
Auto-merging README.md

Story background: the Red Queen has
just merged changes from her branch

dev-redqueen into main.

Now Alice wants to merge her branch
dev-alice into main.

dev-redqueen

N
*main (e) (h)<$ dev-alice
D @

© (O
0

Common 6
ancestor

_————--

README.md version of dev-alice branch.

Tea pot quality-control pipeline
Check and approve tea pots for use in
unbirthday parties.

Authors: Mad Hatter, Alice
Date modified: 2022 Oct 11

Step 1: physical integrity check

* Check exterior for cracks and uneven
painting.

* Check for mice inside of pot.

Step 2: tea-brewing integration test
* Brew tea for 7 min.
* Add 2 cubes of sugar.
* Probe tea.
* Make sure we still have no idea why
a raven is like a writing desk.

CONFLICT (content): Merge conflict m\README md "y <= File with conflicts that need to be manually solved.
Automatic merge failed; fix conflicts and 'ETlen commit the result.

Resolving conflicts

= The text between <<<<<<< and
= The text between

Version from the current
branch (here main).

Version from branch being
merged into the current
branch (here dev-alice).

Note: there is no conflict
for these 2 lines, because
the edits were made at
different locations in the
file. Git is able to auto-
merge such changes.

N

1. Open the conflicting files in the text editor of your choice.

2. Look for the text between <<<<<<< and >>>>>>> .
There can be more than one of such sections, if there is more than one conflict in the file.

Tea pot quality-control pipeline
Check and approve tea pots for use in
unbirthday parties.

<<<L<<L<L<L HEAD

Authors: Mad Hatter, Red Queen
Date modified: 2022 Oct 10
Authors: Mad Hatter, Alice

Date modified: 2022 Oct 11
SO>>>>> dev-alice

Step 1: physical integrity check
* Check for mice inside of pot.
* Verify the Mad Hatter is on time.

Step 2: tea-brewing integration test

* Brew tea for 7 min.

* Add 2 cubes of sugar.

* Probe tea.

* Make sure we still have no idea why a
raven is like a writing desk.

$ git merge dev-alice

Auto-merging README.md
CONFLICT (content):

——-——

Merge conflict m(README . md‘ <= File with conflicts

Automatic merge failed; fix conflicts ana'%hen commit the result.

=

3. Manually edits
the file(s)...

Hash of the added
“merge” commit.

======= s the version of the current branch, i.e. the branch into which we merge (main, in this example).
======= and >>>>>>> is the version from the branch we are merging (dev-alice, in this example).

Tea pot quality-control pipeline
Check and approve tea pots for use in
unbirthday parties.

Authors: Mad Hatter, Red Queen,
Date modified: 2022 Oct 11

Alice

Step 1: physical integrity check
* Check for mice inside of pot.
* Verify the Mad Hatter is on time.

Step 2: tea-brewing integration test

* Brew tea for 7 min.

* Add 2 cubes of sugar.

* Probe tea.

* Make sure we still have no idea why a
raven is like a writing desk.

4

$ git add README.md
it commit 4= |

[main a317d38] Merge branch

4. Stage the conflict-resolved file(s).
5. Commit

An editor will open with a pre-
set commit message. You can
accept it as is, or modify it.

‘dev-alice'

Resolving conflicts: if you get lost...

= |f you are lost at some point, run git status and it will give you some hints and commands.

= A merge can be aborted at anytime with git merge --abort

= Completed merges can be reverted (with the git reset commands —see the “git advanced” slides).

Examples

S git status

On branch main Git tells you what to do and
You have unmerged paths. 7 reminds you of commands.

(fix conflicts and run "git commit")
(use "git merge --abort" to abort the merge)

Unmerged paths:
(use "git add <file>..." to mark resolution)

Both modified: README . md Running git status before conflicts

are resolved in the file.

Running git status after conflicts are

S git status
resolved in the file and the file was staged.

On branch main
All conflicts fixed but you are still merging.
(use "git commit" to conclude merge)

\ Git tells you what to do and
reminds you of commands.

modified: README . md r

Changes to be committed:

e
S
Q
e
©
(S
>
S
(1)
i
o
()
S
K
Q.
Q.
-
(Vs

What’s in a merge commit ?

If there was no conflict, the merge commit contains
nothing but the commit message (and other metadata).

If there was a conflict, the merge commit contains the
conflict resolution changes made to the conflicted file(s).

merge commit. ’—» (i @ main *
& dev-alice

&)
d)
)

SaPat

= {(0)=(5)

$ git show HEAD

commit 10fa3ad505821b0ea628b811143af47343a4d8dc (HEAD -> main)
Merge: 7446b3e b4fb462

Author: Red Queen <off.with.their.heads@wonder.org>

Date: Tue Oct 11 15:16:39 2022 +0200

Merge branch 'dev-redqueen'

S git show HEAD

commit a317d38448daedetbbd9b4862dcaccfdedloccdoe
Merge: 10fa3ad 7999c7c

Author: Alice <alice@redqueen.org>

Date: Tue Oct 11 15:27:35 2022 +0200

(HEAD -> main)

Merge branch 'dev-alice'

diff --cc README.md
index 647belc, 74edef5..3ce8aa’
-—- a/README.md
+++ b/README.md
@@@ -1,8 -1,8 +1,8 @@@
Tea pot quality-control pipeline
Check and approve tea pots for use in unbirthday parties.

- Authors: Mad-Hatter, Red Queen

- Date modified: 2022 Oct 10

- Authors: Mad-Hatter, Alice

++Authors: Mad-Hatter, Red Queen, Alice
+ Date modified: 2022 Oct 11

Step 1: physical integrity check
* Check exterior for cracks and uneven

Demo

= Merging branches (fast-forward and 3-way merge)

Deleting branches

Branches that are merged and are not used anymore can (should) be deleted.

git branch -d <branch name> | < safe option: only lets you delete branches that are fully merged.

git branch -D <branch name> | <= YOLO option: lets you delete any branch.

= Note: A currently active (checked-out) branch cannot be deleted.

. L & new-feature
You must switch to another branch before deleting it.

Example

The 'bugfix' and 'old' branches are fully merged.
$ git branch -d bugfix
Deleted branch bugfix (was bd898dc)

$ git branch -d old O|d|=> 0

Deleted branch old (was 75d3fed)

Trying to delete a non-merged branch with -d will fail:

$ git branch -d new-feature
error: The branch 'testing' is not fully merged.
If you are sure you want to delete it, run 'git branch -D testing’'.

Using -D will allow deletion of a non-merged branch:

$ git branch -D new-feature Commands from
Deleted branch new-feature (was £2a898b) “Example” box

This hash can be used to re-create it:

h i i
— Deleted a branch by mistake ? — no panic !
git branch new-feature £2a898b :

Branch management: best practices

main

Q
\@o—%

= Use branches to develop and tests new changes to your
code/scripts - don’t test directly on main. —O feature

= Don’t hesitate to create branches, they are “cheap” (they
don’t add any overhead to the git database).

= Delete branches that are no longer used.

& Don’t change the history on the main branch if your project is used by others.

e
S
Q
e
©
(S
>
S
(1)
i
o
()
S
K
Q.
Q.
-
(Vs

GitFlow: the idea is to have a long-lived pre-production branch (here

“develop”), on which new features are added until ready for a new
release, at which point the pre-production branch is merged into main.

* Useful if you distribute your code via the main branch of the Git
repo, without making formal releases, i.e. your end-users use the
latest version of main in production.

Branch where =
Alice is working
on a new feature.

Branch where Bob is
/ working on a new feature.

& new-feature-1

<& new-feature-2

<:I dEVElOp Pre-production version of the
data quality-control pipeline.

& main/master

Version of code /

used in production

Main development line of project.
This is the version of the data quality-
control pipeline used in production.

Branch management strategies: GitFlow vs. trunk-based development

Trunk-based development: there is no long-lived branch outside of the
main branch. All feature branches are directly merged into main once they
are completed, and main should always be “production-ready”. Tags are
generally added to denote commits corresponding to versions used in
production.

* If you distribute your code via formal releases, then this strategy
makes more sense as it avoids the overhead of managing an extra long-
lived branch (the pre-release breach in GitFlow).

Branch where F=—»
Alice is working
on a new feature.

& new-feature-1

<& new-feature-2

t

Branch where Bob is

A tag indicates a version working on a new feature.

of the data quality-
control pipeline used in
production.

\

1.1.0 = () & main/master

Main development line of project.
This branch is always in a “ready-to-
release” state (i.e. code must be
fully functioning).

1.0.7 &

P
Recap: example of branched workflow: adding a new feature to an application and fixing a bug

For now the new branch points to Branch where you work
Version of code the same commit as “main”. / on a new feature.
/ used in production
_ Y new-feature < HEAD & new-feature @ HEAD
<& main @ HEAD :
& main
1. Create a new branch to work 2. Do some work on the new
on a new feature and switch to it feature (add commits)
> > & main
git switch -c new-feature git commit

—

3. Bug alert! (problem discovered in production code, must be fixed asap)
Create a new, dedicated, branch for the fix.

git switch -c bug-fix main

/ J HEAD

& new-feature & new-feature & new-feature
HEAD) . 5. bug-fix branch can now be deleted.
4. After testing, merge v bug-fix : _
. bug-fix i . git branch -d bug-fix .
A bug-fix ug-tix into main & main > & main
. >
main 5 \ git switch main \ 1} HEAD 6. Switch back to new-feature
This cpmmit git merge bug-fix The t?“g fix is _ branch to continue work.
contains the now in git switch new-feature
n bug fix. production.

exercise 2

The Git reference webpage

@ This exercise has helper slides

Exercise 2 help: workflow example

HEAD = main =

& fix A HEAD

1. Create new branch fix
and switch to it.

>
-
2. Do some work,
add commiits.
>

3. Test new feature, then merge
branch fix into main.

main 5 & fix @ HEAD

HEAD) main) () & fix

git rebase

make a linear history

. . . * To be completely correct, we should actually say that we replay
g't re base *re p I ay commits * onto a d |ffe rent ba se the differences between commits (i.e. the changes that commits

introduce to our code base), not the commits themselves (a commit
is a state of the repo at a given time, it does not directly contain the
information of changes to the codebase).

= git rebase: move/re-root a branch onto a different base commit.

= Important: the rebase command must be executed when on the branch to rebase, not the branch you rebase on.

git rebase <branch to rebase on>

devel *
Example:
$ git branch b028233 O
* devel < é Make sure you are on the |
main branch you want to rebase ! 38405¢6 O
*devel main \ main
$ git rebase main R O O O
1 b h b | | |
The branch you want to rebase on. p— O O O
\CI> git rebase main |
- O

f I I
Rebase will modify your commit ID values (history of the rebased branch). : 5
It's best to only rebase commits that have never left your own computer.

git rebase: example § HEAD

U’ deve' Before starting the rebase: make sure

you are on the branch to rebase!
In this case, if we are not on devel:

git switch devel

———<:| main
i;j;) git rebase main

§ HEAD
The “replay” of the difference G d evel

between commits C and D

results in the commit D’.
/ We can now fast-forward merge.
Guaranteed to be conflict free :-)
___<:| main

git switch main
git merge devel

§ HEAD
Jd main

O-0-0-0-@—0E-0

1 devel

Resolving conflicts with rebase

= Rebase re-applies all commit to rebase sequentially: at each step there is a potential for conflict...

= To resolve conflicts, you will have to (same as for conflict resolution during merges):

1. Edit the conflicting files, choose the parts
you want to keep, then remove all lines
containing <<<<<<<, ======= and
>>>>>>>>,

2. Mark the files as resolved with
git add <file>

1. Continue the rebase with
git rebase --continue

wnNe

Vi

When a conflict arises, Git will provide guidance:

$ git rebase main

First, rewinding head to replay your work on top of it...
Applying: first commit on new branch

Using index info to reconstruct a base tree...

M new.txt

Falling back to patching base and 3-way merge...
Auto-merging new.txt

CONFLICT (content): Merge conflict in new. txt

error: Failed to merge in the changes.

Patch failed at 0001 first commit on new branch

Use 'git am --show-current-patch' to see the failed patch

Resolve all conflicts manually,
mark them as resolved with "git add/rm <conflicted files>"
, then run "git rebase --continue".

You can instead skip this commit: run "git rebase --skip".
To abort and get back to the state before "git rebase",
run "git rebase --abort".

[+d oge oo . . .
Branch reconciliation strategies when history has diverged: merge vs. rebase

*mainsy(e) (h) < devel
merge (3-way merge) rebase + fast-forward merge
+ Preserves history perfectly. @ @ + Cleaner history = easier to read and navigate.
+ Potentials conflicts must be solved e 0 - Conflicts may have to be solved multiple times.
only once. - Loss of branching history.
- Creates an additional merge commit. @ History of rebased branch is rewritten, not a
- Often leads to a "messy" history. e problem in general.

& g % y devel
Additional in *
”melrézncimmit". @ <:| devel * m <:I i
\ git merge devel git switch devel

it rebase main @
(i) & main * ’)
(e) (h)&devel (e) &main |:>
d @
© (O
()
@)

git switch main
git merge devel

-~ 0-0-0-0-®

(=)

Spoiler-alert: the end result is the same, @and@ have the same content.

[+4
Ultimate history preservation: force the addition of a merge commit with —-no-£f£

If keeping an exact record of how the history of a Git repo came into existence is of prime importance,
some people like to add a merge commit even if a fast-forward merge is possible.

This is possible by adding the —-no-££ option (“no fast-forward”) to git merge.
S git show 10fa3ad
. it 10fa3ad505821b0ea628b8
git merge --no-ff <branch to merge> ‘ ;ZTZ; 744zb§e b4 fbd 62
Author: Alice <alice@redqueen.org>

Date: Tue Oct 11 15:16:39 2022 +0200

Merge branch ‘feature'

(i) main *
&main * (h) ¢= feature

@))
6 @
{——— (dJ amain * ——)

- L~--0O--0O-@-c

o

-

)

=

& (d)
E git merge feature G git merge --no-ff feature

< O)
i) With a regular fast-forward merge, the The merge commit “i” is added for the

S history is cleaner. However, the sole purpose of allowing us to reconstruct ‘D
E information that “f”, “g” and “h” were e the exact history of the repo: it tells us

Q once part of a different branch is lost n that commits “f”, “g” and “h” were once e
° (but in most cases this doesn’t matter). part of a different branch, which was then

o merged into “main”. "
=

(s}

e
S
Q
e
©
(S
>
S
(1)
i
o
()
S
K
Q.
Q.
-
(Vs

Readability vs. history preservation tradeoff

Screenshots of two versions of a same repository (in the sense that it contains the exact same content
with mostly the same commits).

HEAD -> main) Merge branch 'dev-alice' <= Here, history has been fully preserved, by

always using merges and forcing extra merge
commits (--no-ff) when needed.

dev-alice) improvement: add success message to QC pipeline
fix: update README
improvement: better tea-brewing checks

Merge branch 'dev-redqueen'

dev-redqueen) update: add timing module
improvement: check that Mad Hatter is on time

update: add tea-brew integration test Here, having a linear history has been prioritized
update: add physical integrity check to pipeline ! § y P

Initial commit (better readability), by rebasing branches before
‘ (fast-forward) merging them.

HEAD -> main, dev-alice) improvement: add success message to QC pipeline
fix: update README

improvement: better tea-brewing checks

dev-redqueen) update: add timing module

improvement: check that Mad Hatter is on time
update: add tea-brew integration test

update: add physical integrity check to pipeline
Initial commit

siB

*

test_node) Merge pull request #14830 from migueldiascosta/20220124105343 new pr EasyBuild452 Never rebaSing your Changes

N R I T Y Y before merging can lead to a
* 1 | | | adding easyconfigs: EasyBuild-4.5.2.eb hard to read history."

* | | | resume running test suite with Python 3.5 by using actions/setup-python@v2
o | | | add quotes to avoid that Python 3.10 is interpreted as Python 3.1 ..
* | | | stop running easyconfigs test suite with Python 3.5, also test with Python 3.8-3.10

~

*

sync with main + bump version to 4.5.3dev
tag: easybuild-easyconfigs-v4.5.2 Merge pull request #14829 from easybuilders/4.5.x

Merge pull request #14828 from migueldiascosta/eb452

~
~
N P o——

minor tweak release notes for v4.5.2
prepare release notes for EasyBuild v4.5.2 + bump version to 4.5.2

~
~
-~
~

e e e e e e e e e e e e e e
~
*

| | | Merge pull request #14821 from branfosj/20220121150125 new pr X1120210518

o | | | add libXfont2 patch to fix build when libbsd is present

o | | | Merge pull request #14743 from sib-swiss/20220117153155 new_pr_ RDKit2021034

Update RDKit-2021.03.4: update comic-neue-checksum patch checksum

Update RDKit-2021.03.4: add comic-neue-checksum patch description and author

Add patch for hard-coded checksum value of downloaded source file in the source code
add missing binutils build dependency to namedlist easyconfig

adding easyconfigs: namedlist-1.8-GCCcore-11.2.0.eb

* | | Merge pull request #14806 from boegel/20220120190948 new_pr_R-bundle-Bioconductor314

* | | add pathview extension to R-bundle-Bioconductor 3.14

* | | Merge pull request #14711 from ItIsI-Orient/20220113183646_new pr_Short-Pair20170125

Added required changes

Fixed error + edited patch desc

adding easyconfigs: Short-Pair-20170125-foss-2021b.eb and patches: Short-Pair-20170125-Python3fix.patch
Merge pull request #14792 from branfosj/20220119163605_new pr_Pillow-SIMD832

o | the Pillow vB patch also works for Pillow-SIMD v7
* | fix CVE-2021-23437 in Pillow-SIMD v8 + add Pillow-SIMD v8.3.2 in easyconfigs using a 2021b toolchain

Supplementary material...

| Merge pull request #14548 from shot0829/20211213195043 new_pr_elbencho263

Demo

= Rebasing a branch (feat. manual conflict resolution)

Cherry-picking: copy-pasting commits

git cherry-pick

Cherry-pick: merge a single commit into the current branch

= git cherry-pick: "copy"a commit (or several) to the current branch.

git cherry-pick <commit to pick>

Example:
"copy" a fix from one branch to another. ba0824c

/ —— devel

main ——

HEAD

git cherry-pick ba0824c

/— devel
main ———

d8405c6

f \ C The cherry-picked commit has the same

HEAD content, but a different hash.

Retrieve data from earlier commits

git restore

git checkout

Un-stage file modifications (restore file in index)

git restore --staged <file name> |

e
git index Committed
content

= Restores the content of a file in the Git index back to
the latest commit (HEAD commit).

= Does not modify files in the working tree. XXXXXXX

XXXXXXX

XXXXXXX
XXXXXXX

XXXXXXX
XXXXXXX

XXXXXXX

I
I
I
I
I
I
I
I
I
| Version of file in the

Example: un-stage changes to README.md file. ' last commit (HEAD)
$ git status U

On branch main

Changes to be committed: git restore --staged README.md
(use "git restore --staged <file>..." to unstage)
modified: README . md

$ git restore --staged README.md

$ git status
On branch main
Changes not staged for commit:

(use "git add <file>..." to update what will be committed)
(use "git restore <file>..." to discard changes in working directory)
modified: README . md

N

The file is still modified in the working directory, but the changes are no longer staged.

-
)
©
£
£
[
(2

Restore / Checkout Of individual files Warning: these commands will overwrite

existing versions of the retrieved file in your

working tree (without any sort of warning).

Make sure you don’t have uncommitted
changes you want to keep.

git restore -s/--source <commit reference> <file name> A

Retrieving the content of a file from an earlier commit can be done with either:

or > If no commit references is specified, the file is retrieved from the index.

git checkout <commit reference> <file name>

Examples: the <commit reference> can be e.g. a commit ID, a relative reference, a tag or a branch name.

$ git restore -s ba08242 output. txt S git checkout ba08242 output. txt
$ git restore -s HEAD~10 output. txt S git checkout HEAD~10 output. txt
S git restore -s v2.0.5 output.txt S git checkout v2.0.5 output.txt
$ git restore -s devel-branch output. txt Updated 1 path from 2a7fac8
T S git checkout devel-branch output. txt

using a branch name, implicitly refers = Updated 1 path from e55fa6f
to the latest commit on the branch.

A small difference between these two commands is that restore updates the file only in the working tree (i.e. the files in your working directory),
while checkout updates both the working tree and the index.

S git restore --source ad26560 README.md $ git checkout ad26560 README.md

S git status Updated 1 path from e55fa6f

Changes not staged for commit: $ git status

(use "git restore <file>..." to discard changes Changes to be committed:

in working directory) (use "git restore —--staged <file>..." to unstage)
modified: README .md modified: README . md

Checkout of the entire repo state at an earlier commit

= Checking out a commit will restore both the working tree and the index to the exact state of
the specified commit.

= |t will also move the HEAD pointer to that commit.

git checkout <commit reference>

Examples: Make sure to have a clean working tree before doing a checkout!
$ git checkout ba08242 $ git checkout ad26560
S git checkout HEAD~10 error: Your local changes to the following files would be

overwritten by checkout:
README . md
Please commit your changes or stash them before you switch branches

S git checkout v2.0.5

= After a checkout, you enter a "detached HEAD" =——» $ git checkout ba08242
state Note: checking out 'ba08242'.

You are in 'detached HEAD' state. You can look
= To get back to a “normal” state you should go around, make gxperlmental chénges and comlt tkllem,
and you can discard any commits you make in this

back to a regular branch: state without impacting any branches by performing

. . . another checkout.
git switch <branch> or git checkout <branch>

S git add --all
S git commit --message "c3"

<— File remains
available in the

Git database

S git rm output. txt
$ git rm --cached private tests.py

S git commit --message '"c4"

S git checkout c3 output. txt
$ git restore -s c3 output.txt

\ These 2 commands are almost equivalent: the difference is that
git restore will not update the git index with the retrieved file.

exercise 3

The crazy peak sorter script

@ This exercise has helper slides

Exercise 3 help: history of the peak-sorter repo @ feature-dahu
This slide shows the history of the repo for exercise 3, both as the command line output and [
as a schematic representation (on the right). O
This can help you understand the command line representation of a repo’s history. |
git log --all --decorate --oneline --graph O

peak sorter: display highest peak at end of script
peak sorter: added authors as comment to script I
peak sorter: improved code commenting

peak_sorter: add Dahu observation counts to output table O
README: add more explanation about the added Dahu counts

peak sorter: added authors to script O O« HEAD

Add Dahu count table

peak sorter: display name of highest peak when script completes

Add gitignore file to ignore script output
Add README fTile to project O O
peak_sorter: add check that input table has the ALTITUDE and PEAK columns dev_jimmy
Ran script and added output

\ |
peak sorter: add +x permission O O 1c695d9

Add input table of peaks above 4000m in the Alps
peak sorter: add first version of peak sorter script : :

O

O

main

Part Il

Working with remotes

Linking your local repo with an
online server

What is a “remote” ?

A remote is a copy of a Git repository that is stored on a server (i.e. online).
Remotes are very useful, as they allow you to:

= Backup your work.

= Collaborate and synchronize your repo with other Remote copy of repo

team members.

= Distribute your work —i.e. let other people clone
your repo (e.g. like the repo of this course).

git push
git fetch

Good to know: @ git pull
* Each copy of a Git repo (local or online) is a -
full copy of the entire repo’s history “@’ git = git
q 5 Sy P A
(provided it has been synced). (TN (TN
Local copy of repo Local copy of repo

* Git does not perform any automatic sync
between the local and remote repos. All sync
operations must be manually triggered.

(on Alice’s computer) (on Bob’s computer)

Remotes are generally hosted on dedicated servers/services, such as GitHub,
GitLab (either gitlab.com or a self-hosted instance), BitBucket, ...

Add a remote to an existing project (or update a remote’s URL)

= (Case 1: your local repo was cloned from a remote — nothing to do (the remote was automatically added by Git).

= (Case 2: your local repo was created independently from the remote — it must be linked to it.

Add a new remote: git remote add <remote name> <remote url>

Change URL of remote: git remote set-url <remote name> <remote url>

Note: by convention, the <remote name> is generally setto origin.

Examples

Add a new remote (named origin) to the local repo:
$ git remote add origin https://github.com/sibgit/test.git

Update the URL of the existing origin remote.
In this example, the remote was moved GitLab.
$ git remote set-url origin https://gitlab.sib.swiss/sibgit/test.git

==

https://github.com/sibgit/test.git

Example — part 1: creating a new remote and pushing new branches

S O v

52 Alice’s computer GitHub GitLab Remote

git push -u origin dev

git switch dev

& dev @origin/dev &dev
<$a main @ origin/main & main

git push -u origin main

git remote add origin
. https:/github.com/. .. .

Alice has a Git repo with 2 branches: main and dev. She now wants to store her work on GitHub, to collaborate and have a backup.
1. She creates a remote on GitHub and links it to her local repo using git remote add origin <URL of remote>

2. She pushes her branch main to the remote using git push -u origin <branch name>
(at this point the branch has no upstream, so the -u/--set-upstream option must be used).

3. She pushes her branch dev to the remote.

Example — part 2: cloning a remote and checking-out branches

N

i U =P
Alice’s computer GitHub GitLab Remote Bob’s computer

git switch dev |

git clone https:/github.com/..

/
& dev Q@ origin/dev &dev & origin/dev <&adev
£ main @origin/main <4a main < main @ origin/main

Bob has now joined the team to work with Alice.

1. He clones the repo from GitHub using git clone <URL of remote> |. At this point, Bob has no local dev branch - only a pointer to origin/dev.

2. Bob checks-out the dev branch to work on it. Because there is already a remote branch origin/dev present, Git automatically creates a new local branch
dev with origin/dev as upstream (no need add the --create/-c optionto git switch).

Example — part 3: pushing and pulling changes After fetching, if you want to

merge changes, you can also
simplyrungit pull instead

“ of git merge.
[+7) Alice’s computer GitHub GitLab Remote ™ Bob’s computer /

When using git push without specifying a remote /
and branch name, the branch you wish to push must be
the currently active branch. A git merge

: git pull
git lfetch p

& dev* git push _
<& origin/dev &Qdev & origin/dev & dev
£ main @origin/main <4a main < main @ origin/main

When using git pull the
branch you wish to pull must be
(] (]] the currently active branch
(otherwise Git will fetch but not

merge changes) f'
/ o

1. In the mean time, Alice added 2 new commits to dev. She pushes her changes to the remote using git push (since her dev branch
already has an upstream, there is no need to add the —-u/--set-upstream option this time).

2. To get Alice’s updates from the remote, Bob runs git pull), which is a combination of git fetch+git merge.
Important: git fetch | downloads all new changes/updates from the remote, but does not update your local branches.

Example — part 4: reconciliation of a diverging history

N

i U =P
Alice’s computer GitHub GitLab Remote Bob’s computer

! [rejected] dev -> dev (non-fast-forward)
error: failed to push some refs to
'github.com:alice/test-repo.git'

Qdev* git push 7 X{ ___git push|
Qdev*

& origin/dev & dev & origin/dev

<$amain @origin/main & main <£a main €@ origin/main

Both Alice and Bob have now both added some commits to their local dev branch. As a result, the history of their branches has diverged.
1. Alice pushes her changes to the remote with git push, as usual.

2. When Bob tries to git push, his changes are rejected because the history between his local dev branch and the remote have diverged!

Example — part 4: reconciliation of a diverging history (continued)

i i) “ ()
Alice’s computer GitHub GitLab Remote Bob’s computer
git fetch)
&G dev* @ origin/dev Qdev & origin/dev
& dev*
<$amain @origin/main & main <£a main €@ origin/main

In order to be able to push his changes to the remote, Bob must first reconcile his local dev branch with the remote...

1. Bob starts by performinga git fetch, just to get the new commits from the remote and see how his local branch
diverges from the remote (important: this operation does not impact/update his local dev branch).

Example — part 4: reconciliation of a diverging history (continued)

To reconcile his local dev branch with the remote, Bob must decide to

either perform a merge or a rebase.

<2 origin/dev
&Qdev*

In this situation, a regular pull raises an error *

$ git pull
fatal: Need to specify how to
reconcile divergent branches

* On recent Git versions (>= 2.33), the default
pull behavior is to abort if history diverged.
On older versions, the default behavior is to
merge (asin git pull --no-rebase).

Option 1 - reconciliation using merge.

This is equivalent to:

git fetch
git merge origin/dev

eba_"f"_?__—————"/

-X
git Pul_}_::?e____

git bulj —Pak
dse

P

Option 2 - reconciliation using rebase.

This is equivalent to:

git fetch
git rebase origin/dev

If you don’t remember the —--no-rebase and --rebase
optionsof git pull, simply fetch and then merge or
rebase on origin/dev .

This introduces a merge commit.

'
% % & dev* @ origin/dev
%ev* & origin/dev

. . Having the git pull command use --ff-only as
glt pull' a shortcut for fetch + merge default merge option is a recent behavior (Git >= 2.33).

@ In older versions, to force git pull to only allow
fast-forward merges, the following option must be set:

The git pull | command is a shortcut for:
git config --global pull.ff only

1. git fetch | : fetches all updates from the remote.

2. git merge —-ff-only] : merge the currently active branch with its upstream branch (origin/<branch>).

f Fast-forward only -> any divergence in history will cause the command to fail and report an error.

git pull

/ & origin/dev &@dev* G origin/dev

_ git fetch git merge --ff-only

®

5 Y Py

'{-"é; & dev* & origin/dev &dev*

> <a main & main <$a main
S

@

=

c

v

S

2 | n |
Q.

Q.

S

7)

By default, git merges a branch with its upstream branch, so git merge isthe sameas git merge origin/<branch>. ?

Example — part 4: reconciliation of a diverging history (continued)

“
¥\ Alice’s computer GitHub GitLab Remote ™ Bob’s computer
git pull --no-rebase p
& dev* G@origin/dev
& dev* & origin/dev & dev
£ main @ origin/main & main £a main €@ origin/main
| | |
Bob decides to merge without rebase and runs git pull --no-rebase.
Note: depending on the version of Git, the default behavior of git pull is different: The default behavior can be modified in the git config.
* Newer versions default to git pull --ff-only (i.e. raise an error if a fast-forward git config pull.rebase false # merge
merge is not possib]e) git config pull.rebase true # rebase
git config pull.ff only # fast-forward only

* Older versions default to git pull --no-rebase (i.e.the automatically merge)

Example — part 4: reconciliation of a diverging history (the end!)

= ,°] “ &=
Alice’s computer GitHub GitLab Remote Bob’s computer
git pull | git push |
& dev* @origin/dev &Qdev & dev* & origin/dev
£ main @ origin/main & main £ main @ origin/main

Finally, Bob can git push his changes to the remote - there are no more conflicts.

Alice canthen git pull them.

The —-prune option also works with

Example — part 5: deleting branches on the remote git pull --prune.
y
I Alice’s computer GitHub GitLab Remote ¥ Bob’s computer
git push origin --delete feature J git fetch --prune J
git branch -d feature git fetch p
t?feature & origin/feature t?feature &origin/feature
& dev* @ origin/dev & dev & dev* @origin/dev
<4 main @origin/main <a main £ main @ origin/main

We are now at a later point in the development... Alice has just completed a new feature on her branch feature, and merged it into dev. She now wants to
delete the feature branch both locally and on the remote.

1. Alice deletes her local branch with git branch -d <branch name>.

2. Alice deletes the feature branch on the remote with git push origin --delete <branch name>|. This also deletes her origin/feature pointer.
3. Bobruns git fetch, but this does not delete references to remote branches, even if they no longer exist on the remote.

4. To delete his local reference to the remote feature branch (origin/feature), Bob has to use git fetch --prune|

3]
Example — part 6: overwrite history on the remote

Example, if you made some history-rewriting change locally, typically a rebase of a

branch. & dev* @ origin/dev
<& origin/dev
& dev*

git push
--force

) & dev* @origin/dev
- — gf,ipull —
Option 3 — overwrite the remote T Tebagg
with git push --force | T —
& dev* G@origin/dev
This will permanently
delete data on the
| |

remote !!

4]
Interacting with remotes: commands summary

Command What it does Where to run and comments

git push push new commits on the current branch to the remote. Run on the branch that you wish to push.
(only changes on the active branch are pushed)

—-u option is only needed when pushing a branch to the
remote for the very first time. It is not needed if you initially
created the local branch from a remote branch.

Same as git push, but additionally sets the upstream branch to

git push -u origin <branch-name>))
origin/branch-name. Only needed if no upstream is set.

git push origin <branch-name> | Push new commits on the specified branch to the remote. When the remote (here origin) and branch names are
specified, the push command can be run from anywhere.

git push --force Overwrite the branch on the remote with the local version. Warning: this deletes data on the remote!
git fetch Download all updates from the remote to your local repo (even for Can be run from any branch.

non-active branches or branches for which there is no local version).

Does not update your local branch pointer to origin/branch-name.

git pull Download all updates and merge changes the upstream Run on the branch that you wish to update.
origin/branch-name into the active branch (i.e. update the git pull isa shortcut for o
active branch to its version on the remote). git fetch + git merge origin/branch-name

git pull --no-rebase Fetch + 3-way merge active branch with its upstream origin/branch-name.

On recent versions of Git (>= 2.33), the default pull
git pull --rebase Fetch + rebase active branch on its upstream origin/branch-name. behavior is to abort the pull if a branch and its
upstream are diverging.

On older versions, the default behavior is to merge
them (sameas git pull --no-rebase).&

git pull --ff-only Fetch + fast-forward merge active branch with its upstream origin/branch-name.
If a fast-forward merge is not possible, an error is generated.

4]
Interacting with remotes: commands summary

git remote add origin <remote url> | Adda new remote to an existing local repo.

X

git remote -v = Display the remote(s) associated to a repo.

$ git remote -v
origin https://github.com/alice/test-project.git
origin https://github.com/alice/test-project.git

By convention, the <remote name> is generally
setto origin, butit could be anything.

git branch -vva List branches of repo and their associated upstream (if any).

$ git branch -vva = __--=---==-o
manta-dev 18d8de0 ffor:.g:.n/manta devT*manta ray: add animal name

main
* sunfish 18d8de0 manta ray: add angmal name

-

git remote set-url |origin <remote url> | Change/update the URL of a remote associated to a local repo.

Command What it does
git clone <URL> Create a local copy from an existing online repo. Git automatically adds the online repo as a remote.

(fetch) “T]

(push)

The fetch and push URLs
should be the same.

To use different URLs (different
remotes) for push and fetch, add
two different remotes.

608d731 [origin/main] Merge}pull request #44 from sibgit/dahu-dev

We can see that the branches main and manta-dev have an upstream branch. The sunfish branch does not.

GitHub / GitLab

collaborate and share your work

)

GitHub GitLab

GitHub / GitLab — an online home for Git repositories

= GitHub [github.com] and GitLab [gitlab.com] are hosting platforms for Git repositories.

= Very popular to share/distribute open source software.
= Allows to host public (anybody can access) and private (restricted access) repos.
= Hosting of projects is free, with some paid features.

= Popular alternatives include:

= A local instance of GitLab, the same as GitLab.com but hosted by someone else.
= BitBucket [bitbucket.org].

https://github.com/
https://gitlab.com/
https://bitbucket.org/

0

GitHub slide ...

Project home page on GitHub

GitHub
Example of the “home page” of a repository on GitHub

O Search or jump to... Pull requests Issues Marketplace Explore
. “u ”
Code tab: the “home [sibgit/test « Pubic ¢ Pin @Unwaich 2 ~ % Fork 0 ¢y Star 0 .
page of your repo.
¢> Code () lssues 1 19 Pull requests 1 (® Actions ffJ Projects 1 0 Wiki (@) Security |~ Insights 63 Settings
Branch you are
currently viewing |:> P master ~ §¥ 2branches © 0 tags Gotofile Addfile~ About %
33 ‘Ns.d\escriprfon, website, or topics
, \ S
. . @p sibgit Update README.md @8bsc87 on Feb 26,2020 ¥©) 3 commits provided:~< _
List of files present < kY S
in the repo. E> [README.md Update README.md N\ oyearsago 1 Readme el
\\ ¢ 0 stars ~‘~\\
If you have a I:> README.md Go to fil Add fil Cod
. . O 10 Tlle e - oae ¥
README.md file, it
is displayed here Test
(with markdown b2 Clone ; D)
dering) _ To copy the repo’s URL.
rendering). Here you can see the content of your README.md file. HTTPS SSH GitHub CLI
This is a good place to put a description of your project. U

https://github.com/sibgit/test.git r_l;l

Use Git or checkout with SVN using the web URL.

[) Download ZIP

Repository settings (only available if you are the owner)

GitHub

O Search or jump to...

Pull requests Issues Marketplace Explore

GitHub slide ...

@ sibgit/ sibgit.github.io Pubic ¢z Pin
<> Code () Issues 19 Pull requests (v) Actions [Projects [0 Wiki () Security |~ Insights 61 Settings
& General Who has access
Here you Can Set dlve rse Access PUBLIC REPOSITORY [o) DIRECT ACCESS aa Click here to
Sett| ngs concerni ng yo ur © I A Collaborators This repository is public and visible 26 have access to this repository. add a
. . to anyone. 17 collaborators. 9 invitations.
. .) Moderation options Co"aborator
repository, e.g. : Vanage

. .
Invite collaborators. |:> > Branches
e Setup branch tecti T Manage access Add people
P protection. © Tags
(») Actions
K Webhooks [0 Selectall Type =
. . &
View with no collaborator added yet ,
Environments
Q, Find a collaborator...
Who has access = Pages
PRIVATE REPOSITOR Q DIRECT ACCESS A s i)
Only those with access to this 0 collaborators have access to ecurity D ; : ; a“n_e'uchs . Pending Invite @ G'
repository can view it. this repository. Only you can) . Awaiting alinefuchs's response
ibute to this repasit (@) Code security and analysis
Manage contribute to this repository.
& Deplorkays O AmirkH Pending Invite 0J il
E Secrets Awaiting AmirKhalilzadeh’s response G u
Manage access
Integrations a_u» AurelieLen a
. Pending Invite (0]
Click here to add) O ﬁ Awaiting AurelieLen’s response ending fnvite u
58 399 GitHub apps
a collaborator
Email notificati .
You haven't invited any col ors yet & Emall notificalions O ’ Burulca -
] burulca « Collaborator u
christec5
Pending Invite (0] W]
O S Awaiting christec5’s response ending fnvite u

Code and automation

4

Other GitHub features (some of them)

3 sibgit/ sibgit.github.io Pubic

“Home” of
your repo
(repo content)

1

Continuous integration
(automated testing)

1

Issue tracker

1

Group issues and
PR by topics.

Setup automated security scanning
for your code (vulnerability check).

Add a wiki for
your project.

1

Statistics about your
repo’s activity.

1

v v
<> Code () lssues 19 Pull requests () Actions f Projects] Wiki @ Security |~ Insights 61 Settings
Pulse Network graph
Contributors
Timeline of the most recent commits to this repository and its network ordered by most recently pushed to.
Community

Community Standards
Traffic

Commits

Code frequency
Dependency graph
Network

Forks

Owners Feb Mar

sibgit

GitLab slide ...

Project home page on GitLab

Example of the “home page” of a repository on GitLab

P 3
o + LHH)

O 391 & 21

Q Search or go to...

GitLab

SIB Git training

— Branch you
| A awesome-animat-awareness are currently
% Pinned > viewing
8 Manage >
Plan >
<> Code > List of files
@ Buid ' present in
o Seste ' the repo.
) Deploy >
%@ Operate >
[z Monitor >
b Analyze >
6 Settings >

awesome-animal-awareness

A awesome-animal-awareness @

main v awesome-animal-awareness |/ | + v

web: add img subdirectory to store images
Robin Engler authored 3 hours ago

Copy the project’s URL (e.g. to git clone it)

Q o~ ¥r Star 0O % Fork | 0 :

History Find file Edit v : Project information 3

\ ® d753a418 |

N
N

o &Gommits
~,

Name

Bimg

& _gitlab-ci.yml

=+ README.md

E alpaca.html

& blue_whale.html
& dahu.html

& gorilla.html

& index.html

B kiwi_bird.html

B manta_ray.html

Last commit

web: add img subdirectory to store ima...

cicd: add .gitlab-ci.yml file

doc: add README.md

web: add animal page templates

web: add animal page templates

web: add animal page templates

web: add animal page templates

web: rename home page to Awesome A...

web: add animal page templates

web: add animal page templates

N

\\ ¥ 2Branthgs

N

\ ~
\
\\ Last update & 0Tags \\
“ & 1.1MiB Project Stm%ge\
\ 1 minute ago . AN
\\ & 1Environment ~
\ ‘ S
\ 1 minute ago \\
AN) README M
\\ 1 minute ago \\
\ 7 CI/CD configuration ~
\) N ~
S, 1minute ago + Add LICENSE S

History Find file Edit ~

Clone with SSH

git@gitlab.com:sib-git-training/ [

If you have a README.md
file, it is displayed here
(with markdown rendering).

[README.md

Awesome Animal Awareness Project

Welcome to the Awesome Animal Awareness Project.

To visit our website, go to: hitps://sib-git-training.gitlab.io/awesome-animal-awareness

Copy the project’s URL
(e.g. to git clone it)

v GitLab “project” menu

GitLab slide ...

@ 1

Q Search or go to...

Project

|A awesome-animal-awareness

5 Pinned >
i--a-f,“;fl-a-n-a-g-e ----------------- >-
£ Plan >
<> code >

@ Secure >
) Deploy 5
‘% Operate >
L Monitor >
b Analyze >
@ Settings >

f8 Manage

Activity
Members

Labels

</> Code

/ Merge requests

Compare revisions

Snippets

Repo home
page

<:| List of commits

<:| Add people to your project

GitLab

main v = awesome-animal-awareness

Jan 31,2024

web: add img subdirectory to store images
' ¥ Robin Engler authored 4 hours ago

7
2 cicd: add .gitlab-ci.yml file

K ¥ Robin Engler authored 22 hours ago
2 web: rename home page to Awesome Animal Awareness Project
' ¥ Robin Engler authored 1 year ago

web: add animal page templates

rmylonas authored 3 years ago and @ Robin Engler committed 37 minutes ago

3
3
3

'.3.' styles: change paragraphs fonts

VW sibgit authored 3 years ago and ;b: Robin Engler committed 37 minutes ago

<:| History graph of your project

§:I All settings of your project

@manta-ray: add behavior information
@manta—ray: add distribution and image
@manta—ray: add animal name and diet

= 4@\4%: add img subdirectory to store images
[l cicd: add .gitlab-ci.yml file

@web: rename home page to Awesome Animal Awareness Project

Dweb: add animal page templates

fE doc: add README.md
Dfirst commit

Cloning a repo: HTTPS vs. SSH

HTTPS and SSH are two different network protocols that machines can use to communicate.

When cloning (or adding a remote) via:

Go to file Add file =
= HTTPS, you will need to provide a personal access token (PAT) as
authentication credential. Clone ®
* Iftherepo is public, credentials are only needed to push data to HTTPS SSH GitHub CLI
the remote (not to pull).
* Your local Git repo will in principle store the login credentials, so https://github.com/sibgit/test.git o
you need to provide them only once. Use Git or checkout with SVN using the web URL.

= SSH, you will need to add your public SSH key to your GitHub account.

Gaiofie Add file ~

(3 Clone ®

HTTPS SSH GitHub CLI

You don't have any public SSH keys in your GitHub
account. You can add a new public key, or try cloning this

repository via HTTPS.
Reminder: command to clone a repo (here via https)

$ git clone https://github.com/sibgit/test.git

git@github.com:sibgit/test.git f_l;]

e
S
Q
e
©
(S
>
S
(1)
i
o
()
S
K
Q.
Q.
-
(Vs

Use a password-protected SSH key.

https://github.com/sibgit/test.git

Pull Requests (GitHub) and
Merge Requests (GitLab)

An introduction to the upcoming exercise 4...

In exercise 4, we will all work together on building a website for the Awesome Animal Awareness project!

08 =

awesome-animal-awareness-sib-git-training-08f7a250d0eab7ebdbfe5.qgitlab.io

Awesome Animal Awareness Project

Alpaca

Dahu

Kiwi bird

Platypus

Great white shark
Sunfish

Blue whale
Gorilla
Pallas's cat
Tiger

Yeti

Manta ray

How we will work:
= We will split into teams of 2-3 people.

= Each team will be responsible for creating the page of an
(awesome!) animal *.

= Within a team, each person will work on a different part
of the animal’s page (e.g. one person works on the
“Habitat and distribution” section, while another works on
the “Diet” or “Behavior”).

* Note: every animal in the list is awesome — you can’t go wrong!

Habitat and distribution

Mantas are found in tropical and subtropical waters in all the world's major oceans, and also venture into temperate seas.
The furthest from the equator they have been recorded is North Carolina in the United States (31°N) and the North Island of New Zealand (36°S).
They prefer water temperatures above 20 °C and M. alfredi is predominantly found in tropical areas. Both species are pelagic. M. birostris lives mo:

Diet

Manta rays are filter feeders as well as macropredators.
On the surface, they consume large quantities of zooplankton in the form of shrimp, krill, and planktonic crabs.
In deeper depths, mantas consume small to medium-sized fish.

Behaviour

Swimming behavior in mantas differs across habitats: when travelling over deep water, they swim at a constant rate in a straight line, while further i
Mantas may travel alone or in groups up to 50. They may associate with other fish species, as well as sea birds and marine mammals. Mantas sol

What | like about this animal

« It glides gracefully thourgh the sea, like an aquatic bird.
« Unlike its shark relatives, it does not have sharp teeth.

An introduction to the upcoming exercise 4...

= This is how (more or less) our shared repository will look on GitHub/GitLab...

Changes made to the main branch are directly reflected in the production website — so we don’t want to mess-up main !!
= =>You are not allowed to push directly to main.

sunfish-dan

& sunfish-john

John’s personal branch.

& sunfish-dev .
Team branch of the team How are we going to

working on the sunfish page. contribute Changes from
our team branches ?

manta-alice)

manta-bob =

manta-dev &
Team branch of the team
working on the manta-ray

page.

& main

Main development line of project. This
is the version used to generate the live

website.
\

Each time new commits are added
to main on GitHub/GitLab, the
website is updated.

Pull Requests (GitHub) / Merge Requests (GitLab)

Pull Requests (PR) and Merge Requests (MR) are a way to perform a merge operation on
the remote (on GitHub/GitLab) instead of in your local copy of the repository.

PR/MR are the same thing, they just have different names on GitHub/GitLab.

A

~=D
Bob’s computer GitHUb GitLab Remote

(a) on a new feature. He pushes
- his changes to the remote. -

(d) € feature * (d) € feature
G git push ; G
main) main > (b)
O Bob has completed his work The PR/MR workflow:

* main) (d) € feature main) (d)
G git fetch e
git switch main
‘D git pull @
e After the PR/MR is merged, 9
n Bob updates his local repo. m

Why use a PR/MR instead of a local merge (and push) ?

= The branch you want to merge into (e.g. main) is
protected *.

= Gives the opportunity to the repository owner(s)
to review changes before merging them.

= Makes it easy to merge changes from a forked **
repository.

* Protected branches are branches where push operations are
limited to users with enough privileges.

** A fork is a copy of an entire repository under a new ownership.

Bob opens a PR/MR on GitHub/GitLab.

Alice reviews the changes made by Bob on
branch feature. (7]

"X

Alice approves the PR/MR.
Bob (or Alice) merges the PR/MR.

On the remote, the feature branch is now

merged into main. Optionally, feature is

then deleted.

3| After the PR/MR is merged, you can pull the changes from the remote to update your local repo (at this point the merge is only on the remote).

git log --all --decorate --oneline --graph
HEAD manta-dev manta-ray: add behavior information
manta-ray: add distribution and image
manta-ray: add animal name and diet
main) cicd: add .gitlab-ci.yml file

>

k

* Using git fetch is
*k

k

& web: rename home page to Awesome Animal Awareness Project
%

*

*k

k

k

optional, it’s useful if
you want to preview the
position of origin/main
before merging it into
your local main with
git pull.

web: add animal page templates
styles: change paragraphs fonts
styles: add styles.css file
doc: add README.md
first commit .
git fetch --prune
git log --all --decorate --oneline --graph

Merge branch 'manta-dev' into 'main'’ —-—-prune deletes local references to remote branches
(origin/manta-dev has been deleted).

HEAD manta-dev) manta-ray: add behavior information

manta-ray: add distribution and image git switch main
manta-ray: add animal name and diet git pull --prune

git branch -d manta-dev

main) cicd: add .gitlab-ci.yml file
web: rename home page to Awesome Animal Awareness Project
web: add animal page templates

styles: change paragraphs fonts git switch main

git pull

--all --decorate --oneline --graph git branch -d manta-dev
HEAD main Merge branch 'manta-dev'

manta-ray: add behavior information
manta-ray: add distribution and image
manta-ray: add animal name and diet

cicd: add .gitlab-ci.yml file
web: rename home page to Awesome Animal Awareness Project
web: add animal page templates

GitHub slide ...

How to open a Pull Request on GitHub: step-by-step { You will need to do this in exercise 4 ! !

1. On the project’s page on GitHub, go to the Pull requests tab.

(’ Search or jump to... Pull requests Issues Marketplace Explore

O sibgit/ sibgit.github.io Pubiic & Unwateh 17

<> Code () lssues 19 Pull requests (») Actions [Projects [a Wiki @) Security |~ Insights

Label issues and pull requests for new contributors Dismiss
PUII requeStS ta b Now, GitHub will help potential first-time contributors discover issues labeled with @R R

¥ manta-dev had recent pushes 8 minutes ago Compare & pull request
Filters ~ | Q_ is:prisiopen O Labels 9 o Milestones 0 New pull request c 2 . CI |Ck on

New pull request.

0 i9 00pen . 25Closed Author ~ Label ~ Projects ~ Milestones ~ Reviews ~ Assignee ~ Sort ~
Pending pull 19
requests will be
listed here There aren’t any open pull requests.

You could search all of GitHub or try an advanced search.

{1 Pullrequesis (5) Actions [Projects [1] Wiki () Security |~ Insights If there are conflicts’ you probably need to

rebase your branch and resolve them.

3. Select the branches to merge:

Comparing changes

Te~o Choose two branches to see what's changed or to start a new pull reque you need to, you can also compare across forks.
t:l base: master i 'e Cﬂmpare: manta-de\l’ i N} base: master+ = & | compare: manta-dev v v Able to merge. These branches can be automatically merged. u
ﬁ i i Discuss and review the changes in this comparison with others. Learn about pull requests
Branch to Branch to merge
. . . -0- 2 commits 2 files changed A 1 contributor
merge into (your contribution)
o Commits on Mar 10, 2022
. . . Add i_nit_) on habitat an.d behavior for manta ray o oL <
List of commits that will be merged I:>) sl commitd 10 mies o
. . Add i f t
In this example, there are 2 commits on branch oo Tor A Y @ | esrraee | <
’ & sibgit committed 17 minutes ago
“manta-dev” that will be merged into “master”.
Showing 2 changed files with 14 additions and 6 deletions. Split Unified

»

Summary of changes introduced I:> @ 0 L i S T (i

by the pull request. - e s
4 4 <link rel="stylesheet" href="styles.css">
Green lines = new content. C e
Red lines = deleted content. 7 - <h1>77 Aninal name</h1>
T + <hl>Manta Ray - <i>Mobula sp.</i></h1>
8 8
9 e
9+
1@ 10
11 11 <h3>Habitat and distribution</h3>
12 12 <p>
13 e ?? Replace this with a few lines on the animal's habitat and distribution.
13+ Mantas are found in tropical and subtropical waters in all the world's major oceans,
14 + and also venture into temperate seas.
15 +

4. C“Ck on Create pu" request_ 16 + The furthest from the equator they have been recorded is North Carolina in the
17 + United States, and the North Island of New Zealand.
18 +

19 + They prefer water temperatures above &8 °F (2@ °C)

14 20 </p=

R —

Open a pull request

Create a new pull request by comparing changes across two branches. If you need to, you can also compare across forks.

{] base:master~ ¢ | compare: manta-dev~ = Able to merge. These branches can be automatically merged.

*
- Manta dev Reviewers
@ sibgit
Wirite Preview H B I i= < & = i= ©@ 2 «-
Assignees
5 . O ptIO na I Iy’ e nte r Ev | worked hard to add these awesome changes to the manta ray page. No one—assign yourself
Please merge :smiley_cat:
a message for the
Labels
people that will None yet
review your pull
Projects
request. None yet
4
Attach files by dragging & dropping, selecting or pasting them. cn
Milestone
Create pull request > No milestone
@ Remember, coniributions to this repository should follow our GitHub Community Guidelines. Development

Use Closing keywords in the description to

n automatically close issues

Ll
6. Submit your pull request by clicking
Create pull request.

The pull request is now created,
and awaiting approval from an

authorized person.
(e.g. the repo owner or a colleague)

Merging is blocked, because [
someone has to approve your PR.

{9 Pull requests 1 (») Actions [Projects [Wiki () Security |~ Insights

Manta dev #27

)9Ol robinengler wants to merge 2 commits into master from manta-dev ([

(3 Conversation 0 o~ Commits 2 [l Checks 0 Files changed 2

-
-

robinengler commented now

| worked hard to add these awesome changes to the manta ray page.
Please merge &

3 sibgit added 2 commits 31 minutes ago

-0 @ Add info on habitat and behavior for manta ray

. @ Add image for manta ray

Add more commits by pushing to the manta-dev branch on sibgit/sibgit.github.io.

<7 This branch has not been deployed

No deployments

e Review required

At least 1 approving review is required by reviewers with write access. Learn more.

Merging is blocked

Merging can be performed automatically with 1 approving review.

Merge pull request ~ | orview command line instructions.

Collaborator

@ -

dea®lbl

0677d8cC

Pull requests Issues Marketplace Explore

The reviewer of your PR will

then have a look at your changes > coce

(the modifications introduced
with your commits) and approve
them or request changes.

Manta dev #27

pyYelELlY robinengler wants to merge 2 commits into master from manta-dev (0

©)) Conversation 0 -o- Commits 2 [} Checks o Files changed 2
* robinengler commented 4 minutes ago
L]

| worked hard to add these awesome changes to the manta ray page.
Please merge &

E; sibgit added 2 commits 35 minutes ago

-0 é Add info on habitat and behavior for manta ray

-0 @ Add image for manta ray

Add more commits by pushing to the manta-dev branch on sibgit/sibgit.github.io.

7 This branch has not been deployed

No deployments

Review required

At least 1 approving review is required by reviewers with write access. Learn more.

° Merging is blocked

Merging can be performed automatically with 1 approving review.

Merge pull request ~ orview command line instructions

GitHub slide ...

a sibgit/ sibgit.github.io rusic

<z Pin @ Unwatch 17~

19 Pull requests 1 () Actions A Projects 0] Wiki @ Security |~ Insights 63 Settings

Label issues and pull requests for new contributors Dismiss

Now, GitHub will help potential first-time contributors discover issues labeled with (el

Filters ~ Q_ is:pris:open O Labels 9 e Milestones 0 New pull request

[J §% 10pen . 26 Closed Author ~ Label ~ Projects ~ Milestones ~ Reviews ~ Assignee ~ Sort ~

: 0 17 Manta dev I
#27 opened 2 minutes ago by robinengler « Review required I

Collaborator | (2) =-+
Finish your review x

Write Preview H B 7 i= <& & = i= @ 2 «-~

Looking good, thanks for the contribution !
dead1bl

0677d8c

Attach files by dragging & dropping, selecting or pasting them.

() Comment
Submit general feedback without explicit approval.

|
| e your review 1 g Approve
L Submit feedback and approve merging these changes.

O Request changes
Submit feedback that must be addressed before merging.

Manta dev #27

j9Rel:ELly robinengler wants to merge 2 commits into master from manta-dev (0

{3 Conversation 1 -o- Commits 2 [l Checks 0 [® Files changed 2

i
-

robinengler commented 7 minutes ago

| worked hard to add these awesome changes to the manta ray page.
Please merge &

E; sibgit added 2 commits 38 minutes ago

o @ Add info on habitat and behavior for manta ray

S @ Add image for manta ray

@ o sibgit approved these changes 1 minute ago

sibgit left a comment

Looking good, thanks for the contribution !

Add more commits by pushing to the manta-dev branch on sibgit/sibgit.github.io.

This branch has not been deployed
No deployments

Collaborator @ wee

deaeibi

0677d8c

View changes

Owner | (@) =+

° Changes approved

1 approving review by reviewers with write access. Learn more.
+ 1approval

This branch has no conflicts with the base branch
Merging can be performed automatically.

Merge pull request A or view command line instructions.

Show all reviewers

Manta dev #27

i9NO/ = robinengler wants to merge 2 commits into master from manta-dev)

) Conversation 1 -o- Commits 2 [l Checks 0 [Files changed 2
== robinengler commented 9 minutes ago Collaborator | (2) +»»

| worked hard to add these awesome changes to the manta ray page.
Please merge &

£; sibgit added 2 commits 40 minutes ago

O @ Add info on habitat and behavior for manta ray deadibi

-0 @ Add image for manta ray 0677d8c
@ ° sibgit approved these changes 3 minutes ago View changes

sibgit left a comment Owner | (@) =+

Looking good, thanks for the contribution !

@ @ sibgit merged commit a8581be into master 40 seconds ago Revert

Pull request successfully merged and closed Delete branch

You're all set—the manta-dev branch can be safely deleted.

A

Now that the pull request is approved, it can
be merged (either by the reviewer or by you)

by clicking Merge pull request.

T

Completed ! Optionally, you can delete your branch
on the remote (this will not delete it locally).

“ How to open a Pull Request on GitLab: step-by-step { You will need to do this in exercise 4 ! !

0o + !5! SIB Git training / awesome-animal-awareness | Merge requests
1. On the project’s page on GitLab, use D o E

H 1 Q Search or go to... © Yﬂ Ewmiﬂﬂ S minutes 2o
the left-hand side menu to navigate

i N
4 Create merge request)]
s

Project N\
to COde > Merge requeSts. A'awesome-animal—awareness ~----_—’
. I;? Pinned > &
2. Click on New merge request, or on R)

Create merge request if your branch plan > g%
is already listed (as is the case with o Code)

Merge requests »

“manta-dev” in the example).

Repository
Branches

Merge requests are a place to propose
Commits changes you've made to a project and
Tags discuss those changes with others

Interested parties can even contribute by pushing commits if
they want to.

Repository graph

,—----~~

SIB Git training | awesome-animal-awareness /| Merge requests ,‘_—--~\ " ~
|\ \ New merge request)
Open 0 Merged 1 Closed 0 All 1 Bulkem(7 ~ s

. -

~-———_—’

. T
Recent searches v | Search or filter results Updated date ~ ¥

Manta dev Merged &~ Approved 30

11 - created 10 hours ago by Robin Engler updated 10 heurs ago

Email a new merge request to this project

3. On the next screen, select the branch to merge

. _ _ e New merge request

q; (in exercise 4, this is your team branch branch) as

o] Source branch, and “main” as Target branch. Source branch @ Target branch @

= sib-git-training/awesome-animal-aw... ~ manta-dev v sib-git-training/awesome-animal-aw... ~ main ~
n Then click on Compare branches and continue. _

-Q @ manta-ray: add behavior information 4eT46342 [@ cicd: add .gitlab-ci.yml file ° 65ch84T6 | [
© Note: if you have clicked on Create merge request at step 2 "3 Robin Englerautnored Jan 30, 2024 c ’ V8.3 Robin Engle authored Jan 30, 2024 c)

. ’ ——_—------~-
.T'.a this step will be skipped as the correct target and source (‘, @
(O] branches will be automatically selected for you by GitLab. SN ==

GitLab slide ...

New merge request GitLab

From manta-dev into main Change branches

Title (required)

A

Manta dev

::I 4. Give a Title to your merge request (MR). A default Title will be pre-set.
O Mark as draft Optionally you can enter a description.

Drafts cannot be merged until marked ready.

Description
Preview B I § 1=« & = =:=%9 H @
Please merge my changes for the manta ray into main. £ I

5. At the bottom of the page, you Cancel
Switch to ich text edifing can see the commits that are part :> 43
Commits 3 Changes 3

Add description templates to help your contributors to communicate effectively! Of the MR (In th IS eXxam ple, the re _—
. Jan 30, 2024
. are 3 commits).
Assignee Z04 manta-ray: add behavior information
)) P p ¥ Robin Engler authored 22 minutes ago
Unassigned v | Assign to me
. 4 manta-ray: add distribution and image
Reviewer ‘a.» Robin Engler authored 25 minutes ago
Unassigned v

4 manta-ray: add animal name and diet
Approvals are optional. .+’ Robin Engler authored 2 hours ago
> Approval rules

Milestone

Select milestone v
Labels

Select label v

Merge options
Delete source branch when merge request is accepted.
() Squash commits when merge request is accepted.

I —
> =

Cd ~
\ f}“‘fe' {;:I 6. Click on Create merge request to create the MR.

L L

GitLab slide ...

The pull request is now created, and awaiting approval from an authorized person

(e.g. the repo owner or a colleague).

Manta dev

3% Open Robin Engler requested to merge manta-dev [} into main 2 minutes ago
Overview 0 Commits 3 Pipelines 0 Changes 3

Please merge my changes for the manta ray into main.

L0 Fo | ®
8~ Approval is optional (@

© Ready to merge!

Delete source branch [Edit commit message

3 commits and 1 merge commit will be added to main.

Activity

Preview B I §& 1Z <« @ = =:=%9 He¢ 03

irite a comment or drag your files here..

Switch to rich text editing

GitLab

The reviewer of your PR will then have a look at your
changes (the modifications introduced with your
commits) and approve them or request changes.

[] Make this an internal note (2)

Comment v Close merge request

SIB Gittraining / awesome-animal-awareness

Merge requests

i) open Mantadev manta-dev (7, into main

Overview 0
Q Search (e.g. *.vue) (Ctrl+P) ‘ w
£7 img
4
B img_manta.jpg +0-0 @ 5
E manta_ray.html +32-6 [&
7
8
9
10
11
12
13
14

T PR -4,28 +4,54 @@

n

Commits 3 Pipelines 0 Changes 2

manta_ray.html [%}

4 <link rel="stylesheet" href="styles.css">
</head>
<body>

o o«

<h1>?? Animal name</hl>

7 <hl>Manta ray (Mobula sp.)</hl>
8

9
10
11 <h3>Habitat and distribution</h3>
2 <p>

?? Replace this with a few lines on the animal's habitat and distribution.

13 Mantas are found in tropical and subtropical waters in all the world's
14 major oceans, and also venture into temperate seas.
s

16 The furthest from the equator they have been recorded is North Carolina
17 in the United States (31°N) and the North Island of New Zealand (36°S).
18

19 They prefer water temperatures above 20 °C and M. alfredi is
20 predominantly found in tropical areas. Both species are pelagic.
21 M. birostris lives mostly in the open ocean, travelling with the
22 currents and migrating to areas where upwellings of nutrient-rich water
23 increase prey concentrations.
24 </p>

GitLab slide ...

When the merge request is approved, it can be merged by clicking on Merge.

Manta dev

Overview 0 Commits 3 Pipelines 0

Please merge my changes for the manta ray into main.

0 0o ®

8 | Revoke approval =Approved by you @

© Ready to merge!

Delete source branch (] Edit commit message

3 commits and 1 merge commit will be added to main.
’————~

o’ \\
o
\ P2

~~~———’

Changes 2

2% open Robin Engler requested to merge manta-dev [°' into main 7 minutes ago

GitLab

a (] Begin with the selected commit

=S

Done! The MR is now merged, the changes
from the branch are now part of the “main”
branch of the repository.

Bral

<{HiMerge branch 'manta-dev' into 'main’
: add behavior information
: add distribution and image
: add animal name and diet

.gitlab-ci.yml file

Dweb: add animal page templates

styles: change paragraphs fonts
Dstyles: add styles.css file

Hj doc: add README.md

LTvor 2|

D first commit

Manta dev

% Merged Robin Engler requested to merge manta-dev [7} into main 7 minutes ago
Overview 0 Commits 3 Pipelines 0 Changes 2

Please merge my changes for the manta ray into main.

0 o ®

&~ Approved by you @

%= Merged by (& Robin Engler just now

Merge details

= Changes merged into main with 13c625fe.

+ Deleted the source branch.

rename home page to Awesome Animal Awareness Project




Personal Access Tokens (PAT)
on GitHub or GitLab




+]
Personal access tokens (PAT) on GitHub/GitLab

Pushing data to a remote requires some form of authentication...
... otherwise anyone could push anything to your remotes!

For security reasons, GitHub does not allow using your user name
and password for authentication when running a git push
command. Instead you need to use a personal access token (PAT).

In exercise 4 you will need a PAT to push
commits to GitHub/GitLab *.

Let’s generate a PAT together now...

* Alternatively, you can also authenticate to GitHub/GitLab using SSH keys. If your account
is already setup to use SSH keys, then you don’t need a PAT.

Select scopes

Scopes define the access for personal tokens. Read more about OAuth scopes.

repo
repo:status
repo_deployment
public_repo
repoinvite

security_events
] workflow

] write:packages

(7] read:packages
(7] delete:packages

[J admin:org
] write:org
[7] read:org
[J manage_runners:org

] admin:public_key
[] write:public_key
[7] read:public_key

] admin:repo_hook
[[] write:repo_hook
[7] read:repo_hook

[J admin:org_hook
] gist
(] notifications

(] user
[] read:user
] user:email

() user:follow
[[] delete_repo

[7] write:discussion

[[] read:discussion

] admin:enterprise
(] manage_runners:enterprise
[ manage_billing:enterprise

[ read:enterprise

Full control of private repositories
Access commit status

Access deployment status

Access public repositories

Access repository invitations

Read and write security events

Update GitHub Action workflows

Upload packages to GitHub Package Registry
Download packages from GitHub Package Registry

Delete packages from GitHub Package Registry

Full control of orgs and teams, read and write org projects
Read and write org and team membership, read and write org projects
Read org and team membership, read org projects

Manage org runners and runner groups

Full control of user public keys
Write user public keys

Read user public keys

Full control of repository hooks
Write repository hooks

Read repository hooks

Full control of organization hooks

Create gists

Access notifications

Update ALL user data
Read ALL user profile data
Access user email addresses (read-only)

Follow and unfollow users

Delete repositories

Read and write team discussions

Read team discussions

Full control of enterprises
Manage enterprise runners and runner groups
Read and write enterprise billing data

Read enterprise profile data




Generating a “personal access token” (PAT) on GitHub

GitHub

In order to push data (commits) to GitHub, you will need a personal access token (PAT).

2. In your Account settings,

click on Developer settings
(at the very bottom of the list)

3. In Developer settings, click
on Personal access tokens,
and select Tokens (classic).

1. In your user profile (top right),
click on Settings.

== robinengler % =l Robin Engler (robinengle

=™ Robin Eng|er =™ Your personal account

© Setstatus I ; Public profile 88 GitHub Apps Personal access tokens (classic)
Account

o Appearance A OAuth Apps

A Your profile & Accessibility £ Personal access tokens ~ Tokens you have generated that can be used tc
0 Notifications Fine-grained tokens
& vYour repositories Personal access tokens (classic) function like ordinary (
i Pecess I Tokens (classic) or can be used to authenticate to the API over Basic AU
@ Your projects £ Billing and plans ~
& Emails

[ ]
= Your codespaces @ Password and authentication

o @ .
Your organlzatlons (1) Sessions
£ S5H and GPG keys

@ Your enterprises Organizations

Enterprises
¢ Your stars bt
[J Moderation ~

4. Click on Generate new token, and

Q Your sponsors

Code, planning, and automation

Your giStS [ Repositories Select (classic). U

& Codespaces

»~ @ Packages
&, Upgrade ;
& Copilot Personal access tokens (classic) Generate new token~ | Revoke all
Try Enterprise
@ i P & Pages Generate new token
) 4 Saved replies Tokens you have generated that can be used to access the Fine-grained, repo-scoped
& Copilot
Generate new token (classic)

A Security Personal access tokens (classic) function like ordinary OAuth access o coneral use jiit over HTTPS,

5 Feature preVI ew or can be used to authenticate to the API over Basic Authentication. {\I

@ Code security and analysis
Settings
Q @ g Integrations. u

88 Applications

[J GitHub Docs (© Scheduled reminders
AL GitHub Support Archives

&) Security log

Sign out & soomorshiong Go to next page

@ <> Developer settings




GitHub

5. Add a Note (description) to your token and select 6. Copy the personal access token to a safe locations
the repo scope checkbox. The click Generate token. (ideally in a password manager). You will not be able

to access it again later.
New personal access token (classic)

Personal access tokens (classic) function like ordinary OAuth access tokens. They can be used instead of a password Personal access tokens (classic) Generate new token v Revoke all
for Git over HTTPS, or can be used to authenticate to the API over Basic Authentication.

Note Tokens you have generated that can be used to access the GitHub APL.

Repo access token

What's this token for? i .
Make sure to copy your personal access token now. You won't be able to see it again!

Expiration *

30 days % | The token will expire on Thu, Nov 2 2023

+ ghp_GY9IbuAsGDH4REh4tDc16CxicIWXJIe@uMNpx (L] Delete
Select scopes

Scopes define the access for personal tokens. Read more about OAuth scopes. ‘ﬂ
Q repo Full control of private repositories

repo:status Access commit status
repo_deployment Access deployment status
public_repo Access public repositories
repo:invite Access repository invitations
security_events Read and write security events
O workflow Update GitHub Action workflows 7. When you will push content to GitHub for the first

time in the project, you will be asked for your user

|:> Cancel name and password. Instead of the password, enter
the personal access token you just created.




GitLab slide ...

Generating a “personal access token” (PAT) on GitLab

In order to push data (commits) to GitLab, you will need a personal access token (PAT).

1. Click on your user icon (top left),

and select Edit profile. G 2. In your User settings menu
(on the left side), click on
Access Tokens.

Robin Engler
@rengler

Set status

Edit profile =

Preferences

Switch to GitLab Mext

v

b =
D + &

I 3 21

Q Search or go to...

User settings

|®
81:1

8

[=]=]
oo

" %" DB 0 00

Profile
Account
Billing
Applications
Chat

Access Tokens
Emails
Password
Notifications
SSH Keys

GPG Keys

3. On the Personal Access Tokens page, click on Add new token.

GitLab

Sign out
Personal Access Tokens

Active personal access tokens & 2

Token name Scopes
GitLab container registry read-write read_registry, write_registry
GitLab repo access token read_repository, write_repository

Mar 27, 2023

Oct 08, 2023

You can generate a personal access token for each application you use that needs access to the GitLab APL. You can also use personal access tokens to authenticate against Git over
HTTP. They are the only accepted password when you have Two-Factor Authentication (2FA) enabled.

Last Used (9 Expires
10 months ago in 3 months
3 months ago in 8 months

Add new token

Action

9]
i)




“ 4. Give a Token name to your token. You can leave the Expiration date empty,
so your token will be valid for 1 year.

GitLab

5. Select read_repository and write_repository as scopes.

6. Click Generate personal access token.

Personal Access Tokens 7. Copy the personal access token to a safe locations (ideally in a

Active personal access tokens @ 2 password manager). You will not be able to access it again later.

Add a personal access token

@ Your new personal access token has been created. X

Token name

. . Search settings
GitLab repo read/write access
For example, the application using the token or the purpose of the token. Personal Access Tokens
You can generate a personal access token for each application you use that needs access to the GitLab API. You can also use personal access tokens to authenticate against Git over
Expiration date HTTP. They are the only accepted password when you have Two-Factor Authentication (2FA) enabled.
| YYYY-MM-DD ]
@ Your new personal access token X

Select scopes

Scopes set the permission levels granted to the token. Learn more. [ELD S Yl SR E = PR TR 22 e B EeEaE Rk

A

] api 1 r
Grants complete read/write access to the API, including all groups and projects, the container registry, the dep
) read_api
Grants read access to the API, including all groups and projects, the container registry, and the package registr|
(") read_user

Grants read-only access to the authenticated user's profile through the fuser APl endpoint, which includes usel
APl endpoints under fusers.

(") create_runner
Grants create access to the runners.

] k8s_proxy

Grants permission to perform Kubernetes API calls using the agent for Kubernetes. 8. When yOU Wi” pUSh Content to GitLab fOF the ﬁ rSt time in the
:: Ef;i;;erzzjzmy access to repositories on private projects using Git-over-HTTP or the Repository Files API. prOjeCt, you Wi” be aSked for your user name and password‘
vrite_repository Instead of the password, enter the personal access token you

Grants read-write access to repositories on private projects using Git-over-HTTP (not using the API).

) read_registry j USt C reatEd .

Grants read-only access to container registry images on private projects.
[ write_registry
Grants write access to container registry images on private projects.

] ai_features
Grants access to GitLab Duo related API endpoints.

q Create personal access token Cancel

GitLab slide ...




exercise 4

The Awesome Animal Awareness Project

@ This exercise has helper slides



Exercise 4 help: branch — rebase — merge sequence .

& main @ yeti-dev

clone

push

GitHub GitLab

clone

fetch,
switch to yeti-dev

: eti-alice
. deti-alice @y

mainep () @yeti-dev

main = (J @ yeti-dev

do work...

aga

"I TA
LT

git

. ) Yeti-bob <A yeti-bob

main yeti-dev
>@e main =) (J G yeti-dev
>

do work...




. = 42 yeti-alice

push

42 yeti-alice < yeti-dev
main =y (J @ yeti-dev main )
merge
>
yeti-bob = &yeti-dev  pull

main

rebase

=

/)

g
GitHub GitLab

yeti-bob = -
Qyeti-dev
main =) )
AR
o/

o




Thank you for attending this course Swiss Institute of

Bioinformatics



